Skip to main content

Advertisement

Log in

Modelling Techniques for Vibro-Acoustic Dynamics of Poroelastic Materials

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Given the quest for mass reduction while preserving proper vibration and acoustic comfort levels in industrial machinery and vehicles, lightweight poroelastic materials have gained a lot of importance. Often, these materials are applied in a multilayered configuration, which can consist of a number of acoustic, elastic, viscoelastic and poroelastic layers. Among these, poroelastic materials are the main focus of this paper. A poroelastic material comprises two constituents, being the elastic solid constituent, also called the frame, and the fluid filling the voids. Depending on the frequency range of interest, the motion of both constituents can be strongly coupled. Poroelastic materials can dissipate energy very effectively by structural, thermal and viscous means. Considerable research effort has been put in the development of robust models and prediction techniques which are capable of accurately describing the damping phenomena of these materials. After a broad introduction, this paper reviews the most commonly used models, ranging from simple empirical relations to detailed models accounting for the coupled behaviour of both phases and the CAE modelling techniques currently being applied for the analysis of the time-harmonic vibro-acoustic behaviour of these materials. Commonly used methods, such as the Finite Element Method and the Transfer Matrix Method which are mainly fitted for low-freqency and high-frequency applications, respectively, are discussed as well as extensions to improve their efficiency and applicability. The two final sections pay special attention to the promising Wave Based Method, a Trefftz-based technique, the application range of which was recently extended towards poroelastic problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Passchier-Vermeer W, Passchier WF (2000) Noise exposure and public health. Environ Health Perspect 108(1):123–131

    Article  Google Scholar 

  2. Bathe KJ (1996) Finite element procedures. Prentice Hall, New Jersey

    Google Scholar 

  3. Zienkiewicz OC, Taylor RL, Zhu JZ, Nithiarasu P (2005) The Finite Element Method: the three volume set, 6th edn. Butterworth-Heinemann, London

  4. Banerjee PK, Butterfield R (1981) Boundary Element Methods in engineering science. McGraw-Hill Book Co., UK

  5. Von Estorff O (2000) Boundary elements in acoustics: advances and applications. WIT Press, Southampton

    Google Scholar 

  6. Bouillard P, Ihlenburg R (1999) Error estimation and adaptivity for the Finite Element Method in acoustics: 2D and 3D applications. Comput Methods Appl Mech Eng 176:147–163

  7. Freymann R (2000) Advanced numerical and experimental methods in the field of vehicle structural-acoustics. Hieronymus Buchreproduktions GmbH

  8. Marburg S (2002) Six boundary elements per wavelength: is that enough? J Comput Acoust 10:25–51

    Article  Google Scholar 

  9. Lyon RH, De Jong RG (1995) Theory and application of Statistical Energy Analysis, 2nd edn. Butterworth-Heinemann, London

  10. Erlangga YA (2008) Advances in iterative methods and preconditioners for the Helmholtz equation. Arch Comput Methods Eng 15:37–66

    Article  MATH  MathSciNet  Google Scholar 

  11. Craig RR Jr, Kurdila AJ (2005) Fundamentals of structural dynamics, 2nd edn. Wiley, New York

    Google Scholar 

  12. Farhat C, Harari I, Franca LP (2001) The Discontinuous Enrichment Method. Comput Methods Appl Mech Eng 190:6455–6479

  13. Melenk J, Babuška I (1996) The Partition of Unity Finite Element Method: basic theory and applications. Comput Methods Appl Mech Eng 139:289–314

  14. Trefftz E (1926) Ein Gegenstück zum Ritzschen Verfahren. In: Proceedings of the 2nd international congress on applied mechanics. Zurich, Switzerland, pp 131–137

  15. Mace B, Shorter P (2000) Energy flow models from Finite Element Analysis. J Sound Vib 233:369–389

  16. Maxit L, Guyader J-L (2001) Estimation of SEA coupling loss factors using a dual formulation and FEM modal information, part I: theory. J Sound Vib 239:907–930

  17. Langley RS, Cordioli JA (2009) Hybrid deterministic–statistical analysis of vibro-acoustic systems with domain couplings on statistical components. J Sound Vib 321:893–912

    Article  Google Scholar 

  18. Shorter P, Langley R (2005) On the reciprocity relationship between direct field radiation and diffuse reverberant loading. J Acoust Soc Am 117:85–95

    Article  Google Scholar 

  19. Coussy O (2004) Poromechanics. Wiley, New York

    Google Scholar 

  20. Wang HF (2000) Theory of linear poroelasticity, with applications to geomechanics and hydrogeology. Princeton University Press, Princeton

    Google Scholar 

  21. Jensen FB, Kuperman WA, Porter MB, Schmidt H (2011) Computational ocean acoustics, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  22. Smit TH, Hyghe JM, Cowin SC (2002) Estimation of the poroelastic parameters of cortical bone. J Biomech 35:829–835

    Article  Google Scholar 

  23. Allard JF, Atalla N (2009) Propagation of sound in porous media: modeling sound absorbing materials, 2nd edn. Wiley, West Sussex

    Book  Google Scholar 

  24. Zwikker C, Kosten CW (1949) Sound absorbing materials. Elsevier, New York

    Google Scholar 

  25. Biot MA (1956) The theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range. J Acoust Soc Am 28:168–178

    Article  MathSciNet  Google Scholar 

  26. Delany M-E, Bazley EN (1970) Acoustical properties of fibrous materials. Appl Acoust 3:105–116

    Article  Google Scholar 

  27. Miki Y (1990) Acoustical properties of porous materials: modifications of Delany–Bazley models. J Acoust Soc Jpn 11:19–24

    Article  Google Scholar 

  28. Mechel FP (1976) Ausweitung der Absorberformel von Delany und Bazley zu tiefen Frequenzen. Acustica 35:210–213

  29. Komatsu T (2008) Improvement of the Delany–Bazley and Miki models for fibrous sound-absorbing materials. Acoust Sci Technol 29:121–129

  30. Kirchhoff G (1868) Über der Einfluss der Wärmeleitung in einem Gase auf die Schallbewegung. Annalen der Physik and Chemie 134:177–193

  31. Stinson MR (1991) The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape. J Acoust Soc Am 89:550–558

    Article  Google Scholar 

  32. Biot MA (1956) The theory of propagation of elastic waves in a fluid–saturated porous solid. II. Higher frequency range. J Acoust Soc Am 28:179–191

    Article  MathSciNet  Google Scholar 

  33. Craggs A, Hildebrandt JG (1986) The normal incidence absorption coefficient of a matrix of narrow tubes with constant cross-section. J Sound Vib 105:101–107

    Article  Google Scholar 

  34. Attenborough K (1983) Acoustical characteristics of rigid fibrous absorbents and granular media. J Acoust Soc Am 73:785– 799

  35. Johnson DL, Koplik J, Dashen R (1987) Theory of dynamic permeability and tortuosity in fluid–saturated porous media. J Fluid Mech 176:379–402

    Article  MATH  Google Scholar 

  36. Champoux Y, Allard JF (1991) Dynamic tortuosity and bulk modulus in air–saturated porous media. J Appl Phys 70:1975– 1979

  37. Perrot C, Chevilotte F, Hoang MT, Bonnet G, Bécot F-X, Gautron L, Duval A (2012) Microstructures, transport, and acoustic properties of open-cell foam samples: experiments and three-dimensional numerical simulations. J Appl Phys 111:014911

    Article  Google Scholar 

  38. Hoang MT, Perrot C (2013) Identifying local characteristic lenghts governing sound wave properties in solid foams. J Appl Phys 113:084905

    Article  Google Scholar 

  39. Lauriks W, Leclaire P (2008) Chapter 61: Materials testing. In: Havelock D, Kuwano S, Vorländer M (eds) Handbook of signal processing in acoustics. Springer, New York

  40. Lafarge D, Lemarinier P, Allard JF, Tarnow V (1997) Dynamic compressibility of air in porous structures at audible frequencies. J Acoust Soc Am 102:1995–2006

    Article  Google Scholar 

  41. Perrot C, Panneton R, Olny X (2007) Periodic unit cell reconstruction of porous media: application to open-cell aluminum foams. J Appl Phys 101:113538

    Article  Google Scholar 

  42. Auriault JL (1991) Heterogeneous medium. Is an equivalent macroscopic description possible? Int J Eng Sci 29:785–795

    Article  MATH  Google Scholar 

  43. Wilson DK (1993) Relaxation-matched modeling of propagation through porous media, including fractal pore structure. J Acoust Soc Am 94:1136–1145

    Article  Google Scholar 

  44. Pride SR, Morgan FD, Gangi FA (1993) Drag forces of porous media acoustics. Phys Rev B 47:4964–4975

    Article  Google Scholar 

  45. Lafarge D (1993) Propagation du son dans les matériaux poreux à structure rigide saturés par un fluide viscothermique: Définition de paramètres géométrique, analogie electromagnétique, temps de relaxation. PhD thesis, Université du Maine, France

  46. Panneton R, Olny X (2006) Acoustical determination of the parameters governing viscous dissipation in porous media. J Acoust Soc Am 119:2027–2040

    Article  Google Scholar 

  47. Olny X, Panneton R (2008) Acoustical determination of the parameters governing thermal dissipation in porous media. J Acoust Soc Am 123:814–824

    Article  Google Scholar 

  48. Panneton R (2007) Comments on the limp frame equivalent fluid model for porous media. J Acoust Soc Am 122:217–222

    Google Scholar 

  49. Doutres O, Dauchez N, Génevaux J-M, Dazel O (2007) Validity of the limp model for porous materials: a criterion based on the Biot theory. J Acoust Soc Am 122:2038–2048

    Article  Google Scholar 

  50. Boutin C, Royer P, Auriault JL (1998) Acoustic absorption of porous surfacing with dual porosity. Int J Solids Struct 35:4709–4737

    Article  MATH  Google Scholar 

  51. Olny X, Boutin C (2003) Acoustic wave propagation in double porosity media. J Acoust Soc Am 114:73–89

    Article  Google Scholar 

  52. Atalla N, Sgard F, Olny X, Panneton R (2001) Acoustic absorption of macro-perforated porous materials. J Sound Vib 243:659–678

    Article  Google Scholar 

  53. Sgard FC, Olny X, Atalla N, Castel F (2005) On the use of perforations to improve the sound absorption of porous materials. Appl Acoust 66:625–651

    Article  Google Scholar 

  54. Lanoye R (2007) Assessment of the absorption performance of sound absorbing materilas. Use of the Trefftz’s method and of a new dual particle velocity–pressure sensor. KULeuven, Department of Civil Engineering and Department of Acoustics and Thermal Physics, PhD thesis

  55. Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33:1482–1498

    Article  MATH  MathSciNet  Google Scholar 

  56. Burridge R, Keller JB (1981) Poroelasticity equations derived from microstructure. J Acoust Soc Am 70:1140–1146

    Article  MATH  Google Scholar 

  57. Pride SR, Gangi AF, Morgan FD (1992) Deriving the equations of motion for porous isotropic media. J Acoust Soc Am 92:3278–3290

    Article  Google Scholar 

  58. Biot MA, Willis DG (1957) The elastic coefficients of consolidation. J Appl Mech 34:594–601

    MathSciNet  Google Scholar 

  59. Dovstam K (1995) Augmented Hooke’s law in frequency domain. Int J Solids Struct 32:2835–2852

    Article  MATH  Google Scholar 

  60. Hörlin N-E, Nordström M, Göransson P (2001) A 3-D hierarchical FE formulation of Biot’s equations for elasto-acoustic modelling of porous media. J Sound Vib 245:633–652

  61. Göransson P (2006) Acoustic and vibrational damping in porous solids. Philos Trans R Soc A 364:89–108

    Article  Google Scholar 

  62. Kurzeja PS, Steeb H (2012) About the transition frequency in Biot’s theory. JASA Exp Lett 131:454–460

    Google Scholar 

  63. Debergue P, Panneton R, Atalla N (1999) Boundary conditions for the weak formulation of the mixed (u, p) poroelasticity problem. J Acoust Soc Am 106:2383–2390

    Article  Google Scholar 

  64. Hörlin N-E (2004) Hierarchical Finite Element Modelling of Biot’s equations for vibro-acoustic modelling of layered poroelastic media. Doctoral thesis, KTH Aeronautical and Vehicle Engineering, Stockholm, Sweden

  65. Rigobert S, Atalla N, Sgard FC (2003) Investigation of the convergence of the mixed displacement-pressure poroelastic materials using hierarchical elements. J Acoust Soc Am 114:2607–2617

    Article  Google Scholar 

  66. Sagartzazu X, Hervella-Nieto L, Pagalday JM (2008) Review in sound absorbing materials. Arch Comput Methods Eng 15:311–342

    Article  MATH  Google Scholar 

  67. Jaouen L, Renault A, Deverge M (2008) Elastic and damping characterizations of acoustical porous materials: Available experimental methods and applications to a melamine foam. Appl Acoust 69:1129–1140

  68. Pan J, Jackson P (2009) Review of test methods for materials properties of elastic porous materials. SAE Int J Mater Manuf 2:570–579

  69. Jaouen L (2011) Characterization of acoustic and elastic parameters of porous media. In: Proceedings of the symposium on the acoustics of poro-elastic materials, SAPEM2011, Ferrara (Italy)

  70. Vashishth A, Khurana P (2004) Waves in stratified anisotropic poroelastic media: a transfer matrix approach. J Sound Vib 277:239–275

    Article  Google Scholar 

  71. Khuruna P, Boeckx L, Lauriks W, Leclaire P, Dazel O, Allard JF (2009) A description of transversely isotropic sound absorbing porous materials by transfer matrices. J Acoust Soc Am 125:915–921

    Article  Google Scholar 

  72. Carcione JM (2007) Wave fields in real media: Wave propagation in anisotropic, anelastic, porous and electromagnetic media, 2nd edn. Elsevier, Amsterdam

  73. Hörlin N-E, Göransson P (2010) Weak, anisotropic symmetric formulations of Biot’s equations for vibro-acoustic modelling of porous elastic materials. Int J Numer Methods Eng 84:1519–1540

    Article  MATH  Google Scholar 

  74. Göransson P, Hörlin N-E (2010) Vibro-acoustic modelling of anisotropic porous elastic materials: a preliminary study of the influence of anisotropy on the predicted performance in a multi-layer arrangement. Acta Acust United Acust 96:258–265

    Article  Google Scholar 

  75. Lind Nordgren E, Göransson P, Deü J-F, Dazel O (2013) Vibroacoustic response sensitivity due to relative alignment of two anisotropic poro-elastic layers. JASA Express Lett 133:426–430

    Google Scholar 

  76. Bécot F-X, Dazel O, Jaouen L (2010) Structural effects in double porosity materials: analytical modeling and numerical validation. In: Proceedings of the conference on noise and vibration engineering 2010, ISMA2010, Leuven, Belgium

  77. Dazel O, Bécot F-X, Jaouen L (2012) Biot effects for sound absorbing double porosity materials. Acta Acust United Acust 98:567–576

    Article  Google Scholar 

  78. Dauchez N, Sahraoui S, Atalla N (2001) Convergence of poroelastic finite elements based on Biot displacement formulation. J Acoust Soc Am 109:33–40

    Article  Google Scholar 

  79. Dauchez N, Sahraoui S, Atalla N (2002) Investigation and modelling of damping in a plate with a bonded porous layer. J Sound Vib 265:437–449

  80. Tanneau O, Lamary P, Chevalier Y (2006) A boundary element method for porous media. J Acoust Soc Am 120:1239–1251

    Article  Google Scholar 

  81. Craggs A (1978) A finite element model for rigid porous absorbing materials. J Sound Vib 61:101–111

    Article  MATH  Google Scholar 

  82. Göransson P (1995) Acoustic Finite Element formulation of a flexible porous material: a correction for inertial effects. J Sound Vib 185:559–580

  83. Kang YJ, Bolton JS (1995) Finite Element modeling of isotropic elastic porous materials coupled with acoustical finite elements. J Acoust Soc Am 98:635–643

  84. Panneton R, Atalla N (1997) An efficient Finite Element scheme for solving the three dimensional poro-elasticity problems in acoustics. J Acoust Soc Am 101:3287–3297

  85. Coyette JP (1999) The use of Finite-Element and Boundary-Element models for predicting the vibro-acoustic behaviour of layered structures. Adv Eng Softw 30:133–139

  86. Easwaran V, Lauriks W, Coyette JP (1996) Displacement-based Finite Element method for guided wave propagation problems: application to poroelastic media. J Acoust Soc Am 100:2989–3002

  87. Göransson P (1998) A 3-D symmetric Finite Element formulation of the Biot equations with application to acoustic wave propagation through an elastic porous medium. Int J Numer Methods Eng 41:167–192

  88. Atalla N, Hamdi MA, Panneton R (2001) Enhanced weak integral formulation for the mixed (u, p) poroelastic equations. J Acoust Soc Am 109:3065–3068

    Article  Google Scholar 

  89. Atalla N, Panneton R, Debergue P (1998) A mixed displacement-pressure formulation for poroelastic materials. J Acoust Soc Am 104:1444–1452

    Article  Google Scholar 

  90. Dazel O, Brouard B, Depollier C, Griffiths S (2007) An alternative Biot’s displacement formulation for porous materials. J Acoust Soc Am 121:3509–3516

    Article  Google Scholar 

  91. Hörlin N-E (2010) A symmetric weak form of Biot’s equations based on redundant variables representing the fluid, using a Helmholtz decomposition of the fluid displacement vector field. Int J Numer Methods Eng 84:1613–1637

    Article  MATH  Google Scholar 

  92. Kang YJ, Gardner BC, Bolton JS (1999) An axisymmetric poroelastic Finite Element formulation. J Acoust Soc Am 106:565–574

  93. Östberg M, Hörlin NE, Göransson P (2010) Weak formulation of Biot’s equations in cylindrical coordinates with harmonic expansions in the circumferential direction. Int J Numer Methods Eng 81:1439–1454

    MATH  Google Scholar 

  94. Rigobert S, Sgard FC, Atalla N (2004) A two-field hybrid formulation for multilayers involving poroelastic, acoustic, and elastic materials. J Acoust Soc Am 115:2786–2797

    Article  Google Scholar 

  95. Dazel O, Sgard F, Lamarque CH, Atalla N (2002) An extension of complex modes for the resolution of Finite-Element poroelastic problems. J Sound Vib 253:421–445

  96. Dazel O, Sgard F, Lamarque CH (2003) Application of generalized complex modes to the calculation of the forced response of three-dimensional poroelastic materials. J Sound Vib 268:555–580

    Article  Google Scholar 

  97. Sgard F, Atalla N, Panneton R (1997) A modal reduction technique for the Finite Element formulation of Biot’s poroelasticity equations in acoustics. In: 134th ASA meeting, San Diego, USA

  98. Davidsson P, Sandberg G (2006) A reduction method for structure–acoustic and poroelastic–acoustic problems using interface-dependent Lanczos vectors. Comput Methods Appl Mech Eng 195:1933–1945

    Article  MATH  Google Scholar 

  99. Dazel O, Brouard B, Dauchez N, Geslain A (2009) Enhanced Biot’s Finite Element displacement formulation for porous materials and original resolution methods based on normal modes. Acta Acust United Acust 95:527–538

  100. Dazel O, Brouard B, Dauchez N, Geslain A, Lamarque CH (2010) A free interface CMS technique to the resolution of coupled problem involving porous materials, application to a monodimensional problem. Acta Acust United Acust 96:247–257

    Article  Google Scholar 

  101. Rumpler R, Deü J-F, Göransson P (2012) A modal-based reduction method for sound absorbing porous materials in poro-acoustic Finite Element models. J Acoust Soc Am 132:3162–3179

  102. Rumpler R, Göransson P, Deü J-F (2013) A residue-based mode selection and sorting procedure for efficient poroelastic modeling in acoustic Finite Element applications. J Acoust Soc Am 134:4730

  103. Rumpler R (2012) Efficient Finite Element approach for structural-acoustic applications including 3D modelling of sound absorbing porous materials. Doctoral Thesis in Technical Acoustics, Stockholm, Sweden

  104. Dazel O, Brouard B, Groby J-P, Göransson P (2013) A normal modes technique to reduce the order of poroelastic models: application to 2D and coupled 3D models. Int J Numer Methods Eng 96:110–128

  105. Allard JF, Champoux Y, Depollier C (1987) Modelization of layered sound absorbing materials with transfer matrices. J Acoust Soc Am 82:1792–1796

    Article  Google Scholar 

  106. Allard JF, Depollier C, Rebillard P, Lauriks W, Cops A (1989) Inhomogeneous Biot waves in layered media. J Appl Phys 66:2278–2284

    Article  Google Scholar 

  107. Villot M, Guigou C, Gagliardini L (2001) Predicting the acoustical radiation of finite size multi-layered structures by applying spatial windowing on infinite structures. J Sound Vib 245:433–455

    Article  Google Scholar 

  108. Ghinet S, Atalla N (2002) Vibro-acoustic behaviour of multi-layer orthotropic panels. Can Acoust 30:72–73

    Google Scholar 

  109. Atalla N, Sgard F, Amedin CK (2006) On the modeling of sound radiation from poroelastic materials. J Acoust Soc Am 120:1990–1995

    Article  Google Scholar 

  110. Rhazi D, Atalla N (2010) Transfer matrix modeling of the vibroacoustic response of multi-materials structures under mechanical excitation. J Sound Vib 329:2532–2546

    Article  Google Scholar 

  111. Vigran TE (2010) Sound transmission in multilayered structures: introducing finite structural connections in the Transfer Matrix Method. Appl Acoust 71:39–44

  112. Legault J, Atalla N (2009) Numerical and experimental investigation of the effect of structural links on the sound transmission of a lightweight double panel structure. J Sound Vib 324:712–732

    Article  Google Scholar 

  113. Legault J, Atalla N (2010) Sound transmission through a double panel structure periodically coupled with vibration insulators. J Sound Vib 329:3082–3100

    Article  Google Scholar 

  114. Verdière K, Panneton R, Elkoun S, Dupont T, Leclaire P (2013) Prediction of acoustic properties of parallel assemblies by means of Transfer Matrix Method. In: Proceedings of meetings on acoustics, vol 19

  115. Alimonti L, Atalla N, Berry A, Sgard F (2013) A hybrid modelling approach for vibroacoustic systems with attached sound packages. In: Proceedings of meetings on acoustics, vol 19

  116. Tournour M, Kosaka M, Shiozaki H (2007) Modeling fast acoustic trim, using transfer matrix admittance and Finite Element Method. In: SAE 2007 noise and vibration conference and exhibition. St. Charles, IL, USA

  117. Pope LD, Wilby EG, Willis CM, Mayes WH (1983) Aircraft interior noise models: sidewall trim, stiffened structures and cabin acoustics with floor partition. J Sound Vib 89:371–417

    Article  Google Scholar 

  118. Duval A, Dejaeger L, Bischoff L, Morgenstern C (2012) Trim FEM simulation of a headliner cut out module with structureborne and airborne excitations. In: Proceedings of the 7th international styrian noise, vibration and harshness congress: the European automotive noise conference, ISNVH2012, Graz, Austria

  119. Duval A, Dejaeger L, Bischoff L, Lhuillier F, Monet-Descombey J (2013) Generalized light-weight concepts: a new insulator 3D optimization procedure. In: Proceedings of the SAE 2013 noise and vibration conference and exhibition, Gran Rapids, USA

  120. Pluymers B, Van Hal B, Vandepitte D, Desmet W (2007) Trefftz-based methods for time-harmonic acoustics. Arch Comput Methods Eng 14:343–381

    Article  MATH  MathSciNet  Google Scholar 

  121. Chazot JD, Nennig B, Perrey-Debain E (2013) Performances of the Partition of Unity Finite Element Method for the analysis of two-dimensional interior sound field with absorbing materials. J Sound Vib 332:1918–1929

  122. Lanoye R, Vermeir G, Lauriks W, Sgard F, Desmet W (2008) Prediction of the sound field above a patchwork of absorbing materials. J Acoust Soc Am 123:793–802

    Article  Google Scholar 

  123. Teixeira de Freitas JA, Toma M (2009) Hybrid–Trefftz stress elements for incompressible biphasic media. Int J Numer Methods Eng 79:205–238

    Article  MATH  Google Scholar 

  124. Moldovan ID (2008) Hybrid–Trefftz Finite Elements for elastodynamic analysis of saturated porous media. PhD thesis, Universidade Técnica de Lisboa

  125. Teixeira de Freitas JA, Moldovan ID (2011) Hybrid–Trefftz stress elements for bounded and unbounded poroelastic media. Int J Numer Methods Eng 85:1280–1305

    MATH  Google Scholar 

  126. Teixeira de Freitas JA, Moldovan ID, Cismaşiu C (2011) Hybrid–Trefftz displacements elements for poroelastic media. Comput Mech 48:659–673

    Article  MATH  MathSciNet  Google Scholar 

  127. Nennig B, Perry-Debain E, Chazot JD (2011) The method of fundamental solutions for acoustic wave scattering by a single and a periodic array of poroelastic scatterers. Eng Anal Boundary Elem 35:1019–1028

    Article  MATH  Google Scholar 

  128. Gabard G (2007) Discontinuous Galerkin methods with plane waves for time-harmonic problems. J Comput Phys 225:1961–1984

    Article  MATH  MathSciNet  Google Scholar 

  129. Dazel O, Gabard G (2013) Discontinuous Galerkin methods for poroelastic materials. In: Proceedings of meeting on acoustics, ICA 2013 Montreal, Canada

  130. Desmet W (1998) A Wave Based prediction technique for coupled vibro-acoustic analysis. KULeuven, division PMA, PhD. thesis 98D12

  131. Desmet W, Pluymers B, Atak O, Bergen B, D’Amico R, Deckers E, Jonckheere S, Koo K, Lee JS, Maressa A, Navarrete N, Van Genechten B, Vandepitte D, Vergote K (2012) Chapter 1: The Wave Based Method. In: Desmet W, Pluymers B, Atak O (eds) CAE methodologies for mid-frequency analysis in vibration and acoustics. KULeuven , pp 1–60

  132. Deckers E, Atak O, Coox L, D’Amico R, Devriendt H, Jonckheere S, Koo K, Pluymers B, Vandepitte D, Desmet W (2013) The Wave Based Method: an overview of 15 years of research. Wave Motion 51:550–565

  133. Helmholtz HLF (1958) Über integrale der hydrodynamischen Gleichungen, welch den Wirbelbewegungen entsprechen. Crelles J 55:25–55

    Google Scholar 

  134. Cessenat O, Deprès B (2003) Using plane waves as base functions for solving time harmonic equations with the Ultra Weak Variational Formulation. J Comput Acoust 11:227–238

  135. Herrera I (1984) Boundary methods: an algebraic theory. Applicable mathematic series. Pitman Advanced Publishing Programm, London

    Google Scholar 

  136. Van Hal B (2004) Automation and performance optimization of the Wave Based Method for interior structural-acoustic problems. PhD Thesis, Faculty of Engineering, Katholieke Universiteit Leuven

  137. Van Genechten B, Bergen B, Vandepitte D, Desmet W (2010) A Trefftz-based numerical modelling framework for Helmholtz problems with complex multiple scatterer configurations. J Comput Phys 229(18):6623–6643

    Article  MATH  MathSciNet  Google Scholar 

  138. Van Genechten B, Vergote K, Vandepitte D, Desmet W (2010) A multi-level Wave Based numerical modelling framework for the steady-state dynamic analysis of bounded Helmholtz problems with multiple inclusions. Comput Methods Appl Mech Eng 199:1881–1905

  139. Van Genechten B, Vandepitte D, Desmet W (2011) A direct hybrid Finite Element-Wave Based modelling technique for efficient coupled vibro-acoustic analysis. Comput Methods Appl Mech Eng 200:742–764

  140. Huttunen T, Gamallo P, Astley RJ (2009) Comparison of two wave element methods for the Helmholtz problem. Commun Numer Methods Eng 25:35–52

    Article  MATH  MathSciNet  Google Scholar 

  141. Zieliński AP, Herrera I (1987) Trefftz method: fitting boundary conditions. Int J Numer Methods Eng 24:871–891

    Article  Google Scholar 

  142. Varah JM (1979) A practical examination of some numerical methods for linear discrete ill-posed problems. SIAM Rev 21:100–111

    Article  MATH  MathSciNet  Google Scholar 

  143. Varah JM (1983) Pitfalls in the numerical solution of linear ill-posed problems. SIAM J Sci Stat Comput 4:164–176

    Article  MATH  MathSciNet  Google Scholar 

  144. Pluymers B (2006) Wave based modelling methods for steady-state vibro-acoustics. KU Leuven, division PMA, PhD thesis 2006D04, Leuven

  145. Deckers E, Bergen B, Van Genechten B, Vandepitte D, Desmet W (2012) An efficient Wave Based Method for 2D acoustic problems containing corner singularities. Comput Methods Appl Mech Eng 241–244:286–301

  146. Van Genechten B, Atak O, Bergen B, Deckers E, Jonckheere S, Lee JS, Maressa A, Vergote K, Pluymers B, Vandepitte D, Desmet W (2012) An efficient Wave Based Method for solving Helmholtz problems in three-dimensional bounded domains. Eng Anal Bound Elem 36:63–75

  147. Pluymers B, Desmet W, Vandepitte D, Sas P (2005) On the use of a Wave Based prediction technique for steady-state structural-acoustic radiation analysis. Comput Model Eng Sci 7(2):173–184

  148. Colton D, Kress R (1998) Inverse acoustic and electromagnetic scattering theory, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  149. Bergen B, Van Genechten B, Vandepitte D, Desmet W (2010) An efficient Trefftz-based method for three-dimensional Helmholtz problems in unbounded domains. Comput Model Eng Sci 61(2):155–175

    MATH  MathSciNet  Google Scholar 

  150. Bergen B, Pluymers B, Van Genechten B, Vandepitte D, Desmet W (2012) A Trefftz based method for solving Helmholtz problems in semi-infinite domains. Eng Anal Bound Elem 36:30–38

    Article  MATH  MathSciNet  Google Scholar 

  151. Bergen B (2011) Wave based modelling techniques for unbounded acoustic problems. KULeuven, division PMA, PhD thesis 2011D07

  152. Vanmaele C, Vandepitte D, Desmet W (2007) An efficient Wave Based prediction technique for plate bending vibrations. Comput Methods Appl Mech Eng 196:3178–3189

  153. Vanmaele C, Vandepitte D, Desmet W (2009) An efficient Wave Based prediction technique for dynamic plate bending problems with corner stress singularities. Comput Methods Appl Mech Eng 198:2227–2245

  154. Vanmaele C, Vergote K, Vandepitte D, Desmet W (2012) Simulation of in-plane vibrations of 2D structural solids with singularities using an efficient Wave Based prediction technique. Comput Assist Mech Eng Sci 19:135–171

  155. Vanmaele C (2007) Development of a Wave Based prediction technique for the efficient analysis of low- and mid-frequency structural vibrations. KU Leuven, division PMA, PhD thesis 2007D11

  156. Deckers E, Hörlin N-E, Vandepitte D, Desmet W (2012) A Wave Based Method for the efficient solution of the 2D poroelastic Biot equations. Comput Methods Appl Mech Eng 201–204:245–262

  157. Deckers E, Van Genechten B, Vandepitte D, Desmet W (2012) Efficient treatment of stress singularities in poroelastic Wave Based models using special purpose enrichment functions. Comput Struct 89:1117–1130

  158. Deckers E, Vandepitte D, Desmet W (2013) A Wave Based Method for the axisymmetric dynamic analysis of acoustic and poroelastic problems. Comput Methods Appl Mech Eng 257:1–16

  159. Jonckheere S, Deckers E, Van Genechten B, Vandepitte D, Desmet W (2013) A direct hybrid Finite Element Wave Based Method for the steady-state analysis of acoustic cavities with poro-elastic damping layers using the coupled Helmholtz–Biot equations. Comput Methods Appl Mech Eng 263:144–157

  160. Vergote K (2012) Dynamic analysis of structural components in the mid frequency range using the Wave Based Method, Non-determinism and inhomogeneities. KU Leuven, division PMA, PhD thesis 2012D03

  161. Van Genechten B (2010) Trefftz-based mid-frequency analysis of geometrically complex vibro-acoustic problems: hybrid methodologies and multi-level modelling. KU Leuven, division PMA, PhD thesis 2010D08

  162. Keller JB, Givoli D (1989) Exact non-reflecting boundary conditions. J Comput Phys 82:172–192

    Article  MATH  MathSciNet  Google Scholar 

  163. Lee JS, Deckers E, Jonckheere S, Desmet W (2011) A direct hybrid Wave Based Finite Element modeling of poroelastic materials. In: Proceedings of the symposium on the acoustics of poro-elastic materials, SAPEM2011, Ferrara, Italy

  164. Atak O, Bergen B, Huybrechs D, Pluymers B, Desmet W (2013) Coupling of Boundary Element and Wave Based Methods for efficient solving of complex acoustic multiple scattering problems. J Comput Phys 258:165–184

  165. Vergote K, Van Genechten B, Vandepitte D, Desmet W (2011) On the analysis of vibro-acoustic systems in the mid-frequency range using a hybrid deterministic-statistical approach. Comput Struct 89:868–877

    Article  Google Scholar 

  166. Bolton JS, Shiau N-M, Kang YJ (1996) Sound transmission through multi-panel structures lined with elastic porous materials. J Sound Vib 191:317–347

    Article  Google Scholar 

  167. Vigran TE, Kelders L, Lauriks W, Leclaire P, Johansen TF (1997) Prediction and measurements of the influence of boundary conditions in a standing wave tube. Acta Acust United Acust 83:419–423

    Google Scholar 

  168. Allard JF (1998) Propagation of sound in porous media: modeling sound absorbing materials, 1st edn. Elsevier, New York

    Google Scholar 

  169. Sinclair GB (2004) Stress singularities in classical elasticity–I: removal, interpretation and analysis. Appl Mech Rev 57:254–297

    Google Scholar 

  170. Deckers E (2012) A Wave Based approach for steady-state Biot models of poroelastic materials. KULeuven, Department of Mechanical Engineering, PhD thesis 2012D12

  171. Brezzi F, Fortin M (1991) Mixed and hybrid Finite Element Methods, vol 15. Springer series in computational mathematics. Springer, Berlin

  172. van Hal B, Desmet W, Vandepitte D, Sas P (2003) Hybrid Finite Element-Wave Based Method for acoustic problems. Comput Assist Mech Eng Sci 11:375–390

  173. Descheemaeker J (2011) Elastic characterization of porous materials by surface and guided acoustic wave propagation analysis. KU Leuven, Department of Physics, PhD thesis, Leuven

Download references

Acknowledgments

Elke Deckers is a postdoctoral fellow of the Fund for Scientific Research, Flanders (F.W.O.). The Research Fund KU Leuven is also gratefully acknowledged for the support of the postdoctoral research of Elke Deckers and the institute for Promotion of Innovation by Science and Technology Flanders (Belgium) (IWT-Vlaanderen) is gratefully acknowledged for the support of the doctoral research of Stijn Jonckheere. Furthermore, the IWT Flanders within the ASTRA project, the Fund for Scientific Research-Flanders (F.W.O.), and the Research Fund KU Leuven are also gratefully acknowledged for their support. The EC within the FP7 eLiQuiD Marie Curie European Industry Doctorate (GA 316422) is also gratefully acknowledged for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke Deckers.

Appendix: Material Properties

Appendix: Material Properties

This appendix collects the material data used in the examples in this paper. Table 5 shows the air properties used.

Table 5 Material properties of air

Table 6 summarises the data of the poroelastic materials used in this review paper. The material properties of melamine have been experimentally determined by the Department of Physics of KU Leuven, as described in [173]. In the calculations, the average values of the material properties have been used. The polyurethane material properties are taken from [60]. An arbitrary loss factor \(\eta _l\) has been added, as the augmented Hooke’s law has not been applied. The carpet material properties are taken from [63]. The fireflex material data are taken from [167]. It is a poluyrethane foam, which is fabricated by Recticel, Belgium.

Table 6 Material properties of the poroelastic media used in this review paper

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deckers, E., Jonckheere, S., Vandepitte, D. et al. Modelling Techniques for Vibro-Acoustic Dynamics of Poroelastic Materials. Arch Computat Methods Eng 22, 183–236 (2015). https://doi.org/10.1007/s11831-014-9121-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-014-9121-0

Navigation