Skip to main content
Log in

Multitrophic web of insects associated with Piptadenia gonoacantha (Mart.) Macbr. (Fabaceae) and their relationship with resource traits

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

We describe for the first time the food web of insects associated with fruits and seed of Piptadenia gonoacantha (Fabaceae), and analyze their relationships with resource traits, such as biomass and fruit area. A total of 440 fruits of P. Gonoacantha were sampled in the city of Lavras, Minas Gerais, Brazil. We found twenty-one species of insects distributed in three trophic levels. The most widely sampled species was Acanthoscelides clitellarius (Coleoptera, Chrysomelidae, Bruchinae), the main consumer species of seeds. It was also verified the presence of Lepidoptera larvae consuming both seeds and the internal fruit tissue. Other species of herbivorous insects were found in low numbers. The food web was subdivided into one sub-web of 10 parasitoid species and one hyperparasitoid species associated to A. clitellarius and another one sub-web of four parasitoid species associated with Lepidoptera. For the parasitism rates, we obtained the following: 19.11% for the total food web, 17.93% for the A. clitellarius parasitism, and 36% for the Lepidoptera parasitism. The resource traits had influence on the oviposition behavior of A. clitellarius, where fruits with larger area showed more eggs of this species. Fruits with higher biomass showed greater abundance and richness of insects as well as more interactions. Seeds with higher biomass were more often used by herbivorous insects. The larval forms of Lepidoptera caused the greatest damage in seed biomass among herbivores. Seeds with parasitoids did not show a significant difference in biomass when compared to predated seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anjos N (1981) Danos causados em sementes de pau-jacaré (Piptadenia communis Benth) (Leguminosae: Minosoideae) por Acanthoscelides clitellarius (Fahraeus, 1839) (Coleoptera: Bruchidae). Resumos do VI Congresso Brasileiro de Entomologia, Fortaleza, Brasil, p 95

  • Arduin M, Kraus JE (1995) Anatomia e ontogenia de galha foliares de Piptadenia gonoacantha (Fabales, Mimosaceae). Boletim de Botânica da Universidade de São Paulo 14:109–130

    Article  Google Scholar 

  • Carvalho PER (2003) Espécies arbóreas brasileiras. Embrapa Florestas, Colombo

    Google Scholar 

  • Casari AS, Ide S (2012) Coleoptera. In: Rafael JA, Melo GAR, Carvalho CJB, Casari AS, Constantino R (eds) Insetos do Brasil: diversidade e taxonomia. Holos, Ribeirão Preto, pp 553–612

    Google Scholar 

  • Csardi G, Nepusz T (2006) The igraph software package for complex net-work research. Inter J Complex Syst 1695:1–9. http://igraph.org

  • Ctvrtecka R, Sam K, Miller SE, Weiblen GD, Novotny V (2016) Fruit sizes and the structure of frugivorous communities in a New Guinea lowland rainforest. Austral Ecol 41:228–237

    Article  Google Scholar 

  • De Luca Y (1965) Catalogue desmetazoaires parasites etprédateurs de Bruchides (Coleoptera). J Stored Prod Res 1:51–98

    Article  Google Scholar 

  • Departamento Nacional De Meteorologia (1992) Normas climatológicas 1961–1990. Ministério da Agricultura, Brasília

    Google Scholar 

  • Dunne J, Williams R, Martinez N (2002) Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5:558–567

    Article  Google Scholar 

  • English KF, Olckers T (2014) Does the size of the seeds and seed pods of the invasive tree Leucaena leucocephala (Fabaceae) affect their utilization by the biological control agent Acanthoscelides macrophthalmus (Chrysomelidae: Bruchinae)? Afr Entomol 22:872–879

    Article  Google Scholar 

  • Fernandes GWA, Neto ET, Martins RP (1988) Ocorrência e Caracterização de Galhas Entomógenas na Vegetação do Campus Pampulha da Universidade Federal de Minas Gerais. Revista Brasileira de Zoologia 5:11–29

    Article  Google Scholar 

  • Gates MW, Hanson PE (2006) Familia eurytomidae. In: Hanson PE, Gauld I (eds) Hymenoptera de la región neotropical 77-1. Memoirs of the American Entomological Institute, Gainesville, pp 380–387

    Google Scholar 

  • Gauld ID, Hanson PE (2006) La Biologia de los himenópteros: El carnivorismo en las larvas himenópteras. In: Hanson PE, Gauld ID (eds) Hymenoptera de la región neotropical 77-1. Memoirs of the American Entomological Institute, Gainesville, pp 34–49

    Google Scholar 

  • Gibson GAP (2006) Familia Eupelmidae. In: Hanson PE, Gauld ID (eds) Hymenoptera de la región neotropical 77-1. Memoirs of the American Entomological Institute, Gainesville, pp 374–379

    Google Scholar 

  • Gibson GAP, Huber JT, Woolley JB (eds) (1997) Annotated keys to the genera of Nearctic Chalcidoidea (Hymenoptera). NRC Research, Ottawa

    Google Scholar 

  • Greig N (1993) Predispersal seed predation on five Piper species in tropical rainforest. Oecologia 93:412–420

    Article  PubMed  CAS  Google Scholar 

  • Hagstrum DW, Subramanyam B (2009) Stored-product insect resource. AACC International, St. Paul

    Google Scholar 

  • Hall SJ, Raffaelli D (1991) Food-web patterns: lessons from a species-rich web. J Anim Ecol 60:823–841

    Article  Google Scholar 

  • Hanson PE, Gauld ID (eds) (2006) Hymenoptera de la region neotropical. Memoirs of the American Entomological Institute, Gainesville

    Google Scholar 

  • Hanson PE, Heydon S (2006) Familia pteromalidae. In: Hanson PE, Gauld ID (eds) Hymenoptera de la región neotropical 77-1. Memoirs of the American Entomological Institute, Gainesville, pp 403–420

    Google Scholar 

  • Hanson PE, Lasalle J (2006) Superfamília chalcidoidea. In: Hanson PE, Gauld ID (eds) Hymenoptera de la región neotropical 77-1. Memoirs of the American Entomological Institute, Gainesville, pp 304–443

    Google Scholar 

  • Herrera CM (1982) Defense of ripe fruit from pests: it’s significance in relation to plant disperser iteractions. Am Nat 12:218–241

    Article  Google Scholar 

  • Hetz M, Johnson CD (1988) Hymenopterous parasites of some bruchid beetles in North and Central America. J Stored Prod Res 24:131–134

    Article  Google Scholar 

  • Hudson LN, Emerson R, Jenkins GB, Layer K, Ledger ME, Pichler DE et al (2013) Cheddar: analysis and visualization of ecological communities in R. Methods Ecol Evol 4:99–104

    Article  Google Scholar 

  • Hunter MD (1987) Opposing effects of spring defoliation on late season oak caterpillars. Ecol Entomol 12:373–382

    Article  Google Scholar 

  • Hunter MD (1992) Interactions within herbivore communities mediated by the host plant: the keystone herbivore concept. In: Hunter MD, Ohgushi T, Price PW (eds) Effects of resource distribution on animal-plant interactions. Academic Press, New York, pp 287–325

    Chapter  Google Scholar 

  • Hunter MD, Wilmer PG (1989) The potential for interspecific competition between two abundant defoliators on oak: leaf damage and habitat quality. Ecol Entomol 14:267–277

    Article  Google Scholar 

  • Huxham M, Raffaelli D, Pike A (1995) Parasites and food web patterns. J Anim Ecol 64:168–176

    Article  Google Scholar 

  • Kursar TA, Coley PD (2003) Convergence in defense syndromes of young leaves in tropical rainforests. Biochem Syst Ecol 31:929–929

    Article  CAS  Google Scholar 

  • Lasalle J, Schauff ME, Hansson C (2006) Familia eulophidae. In: Hanson PE, Gauld ID (eds) Hymenoptera de la región neotropical 77-1. Memoirs of the American Entomological Institute, Gainesville, pp 356–374

    Google Scholar 

  • Lawton JH (1986) The effect of parasitoids on phytophogous insect communities. In: Waage J, Geathead D (eds) Insect parasitoids. Academic Press, London, pp 265–287

    Google Scholar 

  • Leite GLD, Veloso RVDS., Castro ACR, De Lopes PSN, Fernandes GW (2007) Efeito do AIB sobre a qualidade e fitossanidade dos Alporques de influência da Caryocar brasiliense Camb (Caryocaraceae). Revista Árvore 31:315–320

    Article  CAS  Google Scholar 

  • Leite GLD, Veloso RVDS., Zanuncio JC, Fernandes GW, Almeida CIM, Pereira JMM et al (2013) Seasonal abundance of galling insects (Hymenoptera) on Caryocarbrasiliense (Malpighiales: Caryocaraceae) trees in the Cerrado. Fla Entomol 96:797–809

    Article  Google Scholar 

  • Lorenzi H (2002) Árvores Brasileiras: Manual de Identificação e cultivo de plantas arbóreas naturais do Brasil. Instituto Plantarum, Nova Odessa, pp 4–368

    Google Scholar 

  • Maia LF (2016) Four year multitrophic food web: sourcefood web description, methodology accuracy and species diversity. Dissertation, Universidade Federal de Lavras

  • Maia LF, Tuller J, Faria LDB (2017) Morphological traits of two seed-feeding beetle species and the relationship to resource traits. Neotrop Entomol 46(1):36–44

    Article  PubMed  CAS  Google Scholar 

  • Marques ESDA., Price PW, Cobb NS (2000) Resource abundance and insect herbivore diversity on woody fabaceous desert plants. Environ Entomol 29:696–703

    Article  Google Scholar 

  • Marsh PMSR. (1997) Doryctinae. In: Wharton RA, Marsh PM, Sharkey MJ (eds) Manual of the new world genera of the family Braconidae (Hymenoptera): special publication 1. International Society of Hymenopterists, Washington, DC, pp 207–233

    Google Scholar 

  • Marsh PM, Macêdo MV, Pimental MCP (2000) Descriptions and biological notes on two new phytophagous species of the genus Allorhogas from Brazil (Hymenoptera: Braconidae: Doryctinae). J. Hymenopt Res 9:292–297

    Google Scholar 

  • May RM (1988) How many species are there on Earth? Science 241:1441–1449

    Article  PubMed  CAS  Google Scholar 

  • Mcdaniel B, Boe A (1991) Life history studies host records and morphological description of genitalia of Eurytoma tylodermatis Ashm. (Hymenoptera: Eurytomidae) from South Dakota. Proc Entomol Soc Wash 93:96–100

    Google Scholar 

  • Memmott J, Martinez ND, Cohen JE (2000) Predators, parasitoids and pathogens: species richness, trophic generality and body sizes in a natural food web. J Anim Ecol 69:1–15

    Article  Google Scholar 

  • Modena EDeS, Pires ACV, Barônio GJ, Inforzato I, Demczuk SDB (2012) Do fruit traits of the Senna occidentalis weed influence seed predation by Bruchinae? Revista Brasileira de Biociências 10:293–297

    Google Scholar 

  • Morales-Silva T, Modesto-Zampieron SL (2016) Interações entre parasitoides e insetos endófagos em frutos de Stryphnodendron adstringens (Mart.) Coville (Fabaceae) no Cerrado Mineiro. Revista Agrogeoambiental 2:53–63. https://doi.org/10.18406/2316-1817v8n22016757

    Article  Google Scholar 

  • Morandini MN, Viana MLDe (2009) Pre-dispersal seed predation in three populations of the tree Enterolobium contortisiliquum (Fabaceae). Rev Biol Trop 57:781–788

    Google Scholar 

  • Morris RJ (2009) Interactions between plants and herbivores. In: Levin SA, Carpenter SR, Godfray HCJ, Kinzig AP, Loreau M, Losos B, Walker B, Wilcove DS (eds) The princeton guide to ecology. Princeton the University Press, New Jersey, pp 227–232

    Google Scholar 

  • Noyes J (2016) Universal chalcidoidea database. World Wide Web eletronic Publication. http://www.nhm.ac.uk/chalcidoids. Accessed 03 Jan 2017

  • Ohgushi T (1992) Resource limitation on insect herbivore populations. In: Hunter MD, Ohgushi T, Price PW (eds) Effects of resource distribution on animal-plant interactions. Academic Press, New York, pp 287–325

    Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Henry M, Stevens H et al (2007) The vegan package. Comm Ecol Packag 10:631–637

    Google Scholar 

  • Paine RT (1992) Food web analysis through field measurement of per capita interaction strength. Nature 35:573–575

    Google Scholar 

  • Quicke DLJ (1997) Braconinae. In: Wharton RA, Marsh PM, Sharkey MJ Manual of the new world genera of the family Braconidae (Hymenoptera): special publication 1. International Society of Hymenopterists, Washington, DC, pp 149–174

    Google Scholar 

  • Ribeiro-Costa CS, Sari LT, Viana JH, Mandio D (2011) Ecologia de bruquíneos (Coleoptera: Chrysomelidae) em frutos de Bauhinia holophylla Steud (Caesalpinioideae) no Parque Estadual do Cerrado, Jaguariaíva, Paraná. Coletânea de Pesquisa do Parque Estadual de Vila Velha, Cerrado e Guartelá 1:273–281

    Google Scholar 

  • Rojas-Rousse D (2006) Persistent pods of the tree Acacia caven: a natural refuge for diverse insects including Bruchid beetles and the parasitoids Trichogrammatidae, Pteromalidae and Eulophidae. J Insect Sci 6:1–9

    Article  PubMed  CAS  Google Scholar 

  • Santos G, Zanuncio T, Assis-Junior S, Zanuncio J (1998) Daños por Acanthoscelides clitellarius (Coleoptera: Bruchidae), Lepidoptera (Pyralidae) y Diptera en semillas de Piptadenia communis (Leguminosae). Bosque 19:23–27

    Article  Google Scholar 

  • Sari LT, Ribeiro-Costa CS (2011) Entomofauna associada aos frutos de Stryphnodendron adstringens (Mart.) Coville (Mimosoideae) no Parque Estadual do Cerrado, Jaguariaíva, Paraná. Coletânea de Pesquisa do Parque Estadual de Vila Velha, Cerrado e Guartelá 1:316–325

    Google Scholar 

  • Shaw SR (1997) Cheloninae. In: Wharton RA, Marsh PM, Sharkey MJ (eds) Manual of the new world genera of the family Braconidae (Hymenoptera): special publication 1. International Society of Hymenopterists, Washington, DC, pp 193–201

    Google Scholar 

  • Silva AGA, Gonçalves CR, Galvão DM, Gonçalves AJL, Gomes J, Silva MN, Simoni L (1968) Quarto catálogo dos insetos que vivem em plantas do Brasil, seus hospedeiros e predadores vol 1: Insetos hospedeiros e seus inimigos naturais. Ministério da Agricultura, Defesa e Inspeção Agropecuária, Rio de Janeiro

    Google Scholar 

  • Stouffer DB, Bascompte J (2011) Compartmentalization increases food-web persistence. Proc Natl Acad Sci USA 108:3648–3652

    Article  PubMed  Google Scholar 

  • Teragushi S, Stenzel J, Sedlacek J, Deininger R (1981) Arthropod-grass communities: comparison of communities in Ohio and Alaska. J Biogeogr 8:53–65

    Article  Google Scholar 

  • Tuller J, Paula ELD, Maia LF, Moraes RA, Faria LDB (2015) Seed predation food web, nutrient availability, and impact on the seed germination of Senegalia tenuifolia (Fabaceae). Rev Biol Trop 63:1149–1159

    Article  Google Scholar 

  • Tylianakis JM, Tscharntke T, Lewis OT (2007) Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445:202–205

    Article  PubMed  CAS  Google Scholar 

  • Van Veen FJF, Morris RJ, Godfray HCJ (2006) Apparent competition, quantitative food webs, and the structure of phytophagous insect communities. Annu Rev Entomol 51:187–208

    Article  PubMed  CAS  Google Scholar 

  • Van Veen FJF, Müller CB, Pell JK. Godfray HCJ (2008) Food web structure of three guilds of natural enemies: predators, parasitoids and pathogens of aphids. J Anim Ecol 77:191–200

    Article  PubMed  Google Scholar 

  • Wharton RA, Marsh PM, Sharkey MJ (eds) (1997) Manual of the new world genera of the family Braconidae (Hymenoptera), special publication 1. International Society of Hymenopterists, Washington, DC

    Google Scholar 

  • Whitehead DR (1975) Parasitic hymenoptera associated with brichid-infested fruits in Costa Rica. J Wash Acad Sci 65:108–116

    Google Scholar 

  • Wood A, Haga EB, Costa VA, Rossi MN (2017) Geographic distribution, large-scale spatial structure and diversity of parasitoids of the seed-feeding beetle Acanthoscelides macrophthalmus. Bull Entomol Res 107:322–331

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dra. C.S. Ribeiro-Costa by the identification of the Bruchinae species and to the Dr. V.A. Costa to receive T. Morales-Silva at the Biological Institute in Campinas-SP, Brazil, leading to the identification of Pteromalidae and Eulophidae and giving important knowledge on the taxonomy of Hymenoptera parasitoids. We also thank C.A.R.F. Borges for providing Fig. 1. We also thank the Federal University of Lavras and the graduate program in Entomology for the logistic support and the Brazilian National Council for Scientific and Technological Development (CNPq) for the Master’s degree awarded to T. Morales-Silva. L.D.B. Faria thanks the Minas Gerais Research Foundation (FAPEMIG) and the Brazilian National Council for Scientific and Technological Development (CNPq) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Morales-Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Miriama Malcicka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales-Silva, T., Monteiro, A. & Faria, L.D.B. Multitrophic web of insects associated with Piptadenia gonoacantha (Mart.) Macbr. (Fabaceae) and their relationship with resource traits. Arthropod-Plant Interactions 12, 553–565 (2018). https://doi.org/10.1007/s11829-018-9602-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-018-9602-4

Keywords

Navigation