Skip to main content
Log in

Artificial rainfall increases herbivory on an externally defended forb

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Plants have a variety of herbivore resistance traits, including a diverse array of chemicals, either inside plant tissues or on plant surfaces. External chemical defenses are common and widespread, though understudied as a class. One potential selective force on these defenses is their potential for abiotic dislodgement given their exposed position. I tested whether abiotic removal (artificial rainfall) leads to increased herbivory in the annual chenopod Atriplex rosea. This plant, like other chenopods, has specialized secretory trichomes, which secrete water-soluble herbivore resistance compounds onto the plant’s surfaces. Consistent with this hypothesis, I found significantly greater chewing herbivory in plants which received artificial rainfall compared to no-rainfall controls and a below-leaf water control. This simple experiment demonstrates that abiotic factors can directly change the efficacy of a resistance trait.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baldwin BC, Goldman D, Keil D, Patterson R, Rosatti T, Wilken D (2012) The Jepson manual: vascular plants of California, 2nd edn. University of California Press, Berkeley

    Google Scholar 

  • Dell B, McComb A (1979) Plant resins—their formation, secretion and possible functions. Adv Bot Res 6:277–316

    Article  Google Scholar 

  • Dussourd DE, Denno RF (1991) Deactivation of plant defense—correspondence between insect behaviour and secretory canal architecture. Ecology 72:1383–1396. doi:10.2307/1941110

    Article  Google Scholar 

  • Eiseman CS (2014) New host records and other notes on North American leaf-mining Chrysomelidae (Coleoptera). Coleopt Bull 68:351–359

    Article  Google Scholar 

  • Elle E, Hare JD (2000) No benefit of glandular trichome production in natural populations of Datura wrightii? Oecologia 123(1):57–65

    Article  CAS  PubMed  Google Scholar 

  • Elle E, van Dam N, Hare J (1999) Cost of glandular trichomes, a “resistance” character in Datura wrightii Regel (Solanaceae). Evolution (NY) 53:22–35

    Google Scholar 

  • Gimsing AL, Bælum J, Dayan FE et al (2009) Mineralization of the allelochemical sorgoleone in soil. Chemosphere 76:1041–1047. doi:10.1016/j.chemosphere.2009.04.048

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Coloma A, Wisdom CS, Rundel PW (1988) Ozone impact on the antioxidant nordihydroguaiaretic acid content in the external leaf resin of Larrea tridentata. Biochem Syst Ecol 16:59–64. doi:10.1016/0305-1978(88)90119-6

    Article  Google Scholar 

  • Gonzalez-Coloma A, Wisdom CS, Rundel PW (1990) Compound interactions effects of plant antioxidants in combination with carbaryl on performance of Trichoplusia ni (Cabbage Looper). J Chem Ecol 16:887–899. doi:10.1007/BF01016498

    Article  CAS  PubMed  Google Scholar 

  • Karban R, Myers J (1989) Induced plant responses to herbivory. Annu Rev Ecol Syst 20:331–348

    Article  Google Scholar 

  • Kurashige N, Agrawal A (2005) Phenotypic plasticity to light competition and herbivory in Chenopodium album (Chenopodiaceae). Am J Bot 92:21–26

    Article  PubMed  Google Scholar 

  • Lincoln DE, Mooney HA (1984) Herbivory on Diplacus aurantiacus shrubs in sun and shade. Oecologia 64:173–176. doi:10.1007/BF00376867

    Article  PubMed  Google Scholar 

  • Lopresti EF (2013) Chenopod salt bladders deter insect herbivores. Oecologia 174:921–930. doi:10.1007/s00442-013-2827-0

    Article  PubMed  Google Scholar 

  • LoPresti EF (2016) Chemicals on plant surfaces as a heretofore unrecognized, but ecologically informative, class for investigations into plant defence. Biol Rev 91:1102–1117. doi:10.1111/brv.12212

    Article  PubMed  Google Scholar 

  • Martens SN, Boyd RS (1994) The ecological significance of nickel hyperaccumulation—a plant chemical defense. Oecologia 98:379–384. doi:10.1007/bf00324227

    Article  PubMed  Google Scholar 

  • Osmond C, Bjorkman O, Anderson D (1980) Physiological processes in ecology: towards a synthesis with Atriplex. Springer, Berlin

    Book  Google Scholar 

  • Palmer TM, Brody AK (2007) Mutualism as reciprocal exploitation: african plant–ants defend foliar but not reproductive structures. Ecology 88:3004–3011. doi:10.1890/07-0133.1

    Article  PubMed  Google Scholar 

  • Raguse CA, Young JA, Evans RE (1977) Germination of California annual range plants in response to a summer rain. Agron J 69:327–329

    Article  Google Scholar 

  • Shomer-Ilan A, Nissenbaum A, Waisel Y (1981) Photosynthetic pathways and the ecological distribution of the Chenopodiaceae in Israel. Oecologia 48:244–248. doi:10.1007/BF00347970

    Article  PubMed  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

    Google Scholar 

  • Van Dam NM, Hare DJ (1998) Differences in distribution and performance of two sap-sucking herbivores on glandular and non-glandular Datura wrightii. Ecol Entomol 23:22–32. doi:10.1046/j.1365-2311.1998.00110.x

    Article  Google Scholar 

Download references

Acknowledgements

Cathy Koehler and Paul Aigner supported this work at the McLaughlin reserve, as did the staff of Homestake Mining Company. Charley Eiseman identified Monoxia angularis. Rick Karban read and gave insightful comments on the manuscript. This work was funded by the Jastro-Shields fund through the graduate group in ecology at UC Davis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric F. LoPresti.

Additional information

Handling Editor: Stanislav Gorb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LoPresti, E.F. Artificial rainfall increases herbivory on an externally defended forb. Arthropod-Plant Interactions 11, 871–874 (2017). https://doi.org/10.1007/s11829-017-9541-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-017-9541-5

Keywords

Navigation