Skip to main content
Log in

Functional analysis of an APETALA1-like MADS box gene from Eustoma grandiflorum in regulating floral transition and formation

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

An Eustoma grandiflorum APETALA1 (EgAP1) gene showing high homology to the SQUA subfamily of MADS-box genes was isolated and characterized. EgAP1, containing a conserved euAP1 motif at the C-terminus, showed high sequence identity to Antirrhinum majus SQUAMOSA in the SQUA subfamily. EgAP1 mRNA was detected in the leaf and expressed significantly higher in young flower buds than in mature flower buds. In flowers, EgAP1 mRNA was strongly detected in sepal, weakly detected in petal and was absent in stamen and carpel. Transgenic Arabidopsis plants ectopically expressing EgAP1 flowered early and produced terminal flowers. In addition, the conversion of petals into stamen-like structures was also observed in 35S::EgAP1 flowers. 35S::EgAP1 was able to complement the ap1 flower defects by restoring the defect for sepal formation and significantly increasing second whorl petal production in Arabidopsis ap1 mutant plants. These results revealed that EgAP1 is the APETALA1 homolog in E. grandiflorum and that the function of EgAP1 is involved in floral induction and flower formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Angenent GC, Busscher M, Franken J, Mol JNM, van Tunen AJ (1992) Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Plant Cell 4:983–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angenent GC, Franken J, Busscher M, Weiss D, van Tunen AJ (1994) Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J 5:33–44

    Article  CAS  PubMed  Google Scholar 

  • Azeez A, Miskolczi P, Tylewicz S, Bhalerao RP (2014) A tree ortholog of APETALA1 mMediates photoperiodic control of seasonal growth. Curr Biol 24:717–724

    Article  CAS  PubMed  Google Scholar 

  • Berbel A, Navarro C, Ferrandiz C, Canas LA, Madueno F, Beltran JP (2001) Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species. Plant J 25:441–451

    Article  CAS  PubMed  Google Scholar 

  • Bowman JL, Alvarez J, Weigel D, Meyerowitz EM (1993) Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119:721–743

    CAS  Google Scholar 

  • Chang YY, Chiu YF, Wu JW, Yang CH (2009) Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana. Plant Cell Physiol 50:1425–1438

    Article  CAS  PubMed  Google Scholar 

  • Chen MK, Lin IC, Yang CH (2008) Functional analysis of three lily (Lilium longiflorum) APETALA1-like MADS box genes in regulating floral transition and formation. Plant Cell Physiol 49:704–717

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  CAS  PubMed  Google Scholar 

  • Ferrandiz C, Gu Q, Martienssen R, Yanofsky MF (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127:725–734

    CAS  PubMed  Google Scholar 

  • Fornara F, Parˇenicova L, Falasca G, Pelucchi N, Masiero S, Ciannamea S, Lopez-Dee Z, Altamura MM, Colombo L, Kater MM (2004) Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiol 135:2207–2219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafson-Brown C, Savidge B, Yanofsky MF (1994) Regulation of the Arabidopsis floral homeotic gene. APETALA1 Cell 76:131–143

    Article  CAS  PubMed  Google Scholar 

  • Hou CJ, Yang CH (2009) Functional analysis of FT and TFL1 orthologs from orchid (Oncidium Gower Ramsey) that regulate the vegetative to reproductive transition. Plant Cell Physiol 50:1544–1557

    Article  CAS  PubMed  Google Scholar 

  • Hou CJ, Yang CH (2016) Comparative analysis of the pteridophyte Adiantum MFT ortholog reveals the specificity of combined FT/MFT C and N terminal interaction with FD for the regulation of the downstream gene AP1.. Plant Mol Biol 91:563–579

    Article  CAS  PubMed  Google Scholar 

  • Hsu HF, Huang CH, Chou LH, Yang CH (2003) Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol 44:783–794

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Wang S, Jiang J, Liu G, Li H, Chen S, Xu H (2014) Overexpression of BpAP1 induces early flowering and produces dwarfism in Betula platyphylla × Betula pendula. Physiol Plant 151:495–506

    Article  CAS  PubMed  Google Scholar 

  • Huijser P, Klein J, Lonnig W, Meijer H, Saedler H, Sommer H (1992) Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J 11:1239–1249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ichimura K, Korenaga M (1998) Improvement of vase life and petal color expression in several cultivars of cut Eustoma flowers using sucrose with 8-hydroxy-quinoline sulfate. Bull Natl Res Inst Veg Ornam Plants Tea 13:31–39

    CAS  Google Scholar 

  • Ishimori M, Kawabata S (2014) Conservation and diversification of floral homeotic MADS-box genes in Eustoma grandiflorum. J Jpn Soc Hort Sci 83:172–180

    Article  CAS  Google Scholar 

  • Jack T (2001) Plant development going MADS. Plant Mol Biol 46:515–520

    Article  CAS  PubMed  Google Scholar 

  • Jang S, An K, Lee S, An G (2002) Characterization of tobacco MADS-box genes involved in floral initiation. Plant Cell Physiol 43:230–238

    Article  CAS  PubMed  Google Scholar 

  • Jeon JS, Lee S, Jung KH, Yang WS, Yi GH, Oh BG, An G (2000) Production of transgenic rice plants showing reduced heading date and plant height by ectopic expression of rice MADS-box genes. Mol Breed 6:581–592

    Article  CAS  Google Scholar 

  • Kater MM, Dreni L, Colombo L (2006) Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. J Exp Bot 57:3433–3444

    Article  CAS  PubMed  Google Scholar 

  • Kempin SA, Savidge B, Yanofsky MF (1995) Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267:522–525

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kyozuka J, Harcourt R, Peacock WJ, Dennis ES (1997) Eucalyptus has functional equivalents of the Arabidopsis AP1 gene. Plant Mol Biol 35:573–584

    Article  CAS  PubMed  Google Scholar 

  • Kyozuka J, Kobayashi T, Morita M, Shimamoto K (2000) Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol 41:710–718

    Article  CAS  PubMed  Google Scholar 

  • Li KH, Chung TH, Hou CJ, Yang CH (2015) Functional analysis of the FT homolog from Eustoma grandiflorum reveals its role in regulating A and C functional MADS box genes to control floral transition and flower formation. Plant Mol Biol Rep 33:770–782

    Article  CAS  Google Scholar 

  • Liljegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS, Yanofsky MF (1999) Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11:1007–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Litt A, Irish VF (2003) Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165:821–833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Kong J, Li T, Wang Y, Wang A, Han Z (2013a) Isolation and characterization of an APETALA1-like gene from pear (Pyrus pyrifolia). Plant Mol Biol Rep 31:1031–1039

    Article  CAS  Google Scholar 

  • Liu Y, Song H, Liu Z, Hu G, Lin S (2013b) Molecular characterization of loquat EjAP1 gene in relation to flowering. Plant Growth Regul 70:287–296

    Article  CAS  Google Scholar 

  • Mandel MA, Yanofsky MF (1995) A gene triggering flower formation in Arabidopsis. Nature 377:522–524

    Article  CAS  PubMed  Google Scholar 

  • Mandel MA, Yanofsky MF (1998) The Arabidopsis AGL9 MADS box gene is expressed in young flower primordia. Sex Plant Reprod 11:22–28

    Article  CAS  Google Scholar 

  • Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273–277

    Article  CAS  PubMed  Google Scholar 

  • Masiero S, Imbriano C, Ravasio F, Favaro R, Pelucchi N, Gorla MS, Mantovani R, Colombo L, Kater MM (2002) Ternary complex formation between MADS-box transcription factors and the histone fold protein NF-YB. J Biol Chem 277:26429–26435

    Article  CAS  PubMed  Google Scholar 

  • Mino M, Oka M, Tasaka Y, Iwabuchi M (2003) Thermoinduction of genes encoding the enzymes of gibberellin biosynthesis and a putative negative regulator of gibberellin signal transduction in Eustoma grandiflorum. Plant Cell Rep 22:159–165

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki S, Sugawara H, Ikeo K, Gojobori T, Tateno Y (2004) DDBJ in the stream of various biological data. Nucleic Acids Res 32:D31-D34

    Article  PubMed Central  Google Scholar 

  • Mouradov A, Glassick TV, Hamdorf BA, Murphy LC, Marla SS, Yang Y, Teasdale RD (1998) Family of MADS-box genes expressed early in male and female reproductive structure of monterey pine. Plant Physiol 117:55–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Ohkawa K, Kano A, Kanematsu K, Korenaga M (1991) Effects of air temperature and time on rosette formation in seedlings of Eustoma grandiflorum. (Raf.). Shinn Sci Hortic 48:171–176

    Article  Google Scholar 

  • Ohkawa K, Korenaga M, Yoshizumi T (1993) Influence of temperature prior to seed ripening and at germination on rosette formation and bolting of Eustoma grandiflorum. Sci Hortic 53:225–230

    Article  Google Scholar 

  • Ohkawa K, Yoshizumi T, Korenaga M, Kanematsu K (1994) Reversal of heat-induced rosetting in Eustoma grandiflorum with low temperatures. Hortscience 29:165–166

    Google Scholar 

  • Peng YJ, Shih CF, Yang JY, Tan CM, Hsu WH, Huang YP, Liao PC, Yang CH (2013) A RING-Type E3 ligase controls anther dehiscence by activating the jasmonate biosynthetic pathway gene DEFECTIVE IN ANTHER DEHISCENCE1 in Arabidopsis. Plant J 74:310–327

    Article  CAS  PubMed  Google Scholar 

  • Pnueli L, Hareven D, Broday L, Hurwitz C, Lifschitz E (1994) The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell 6:175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purugganan MD, Rounsley SD, Schmidt RJ, Yanofsky MF (1995) Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140:345–356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rounsley SD, Ditta GS, Yanofsky MF (1995) Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7:1259–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz EA, Haughn GW (1993) Genetic analysis of the floral initiation process (FLIP) in Arabidopsis. Development 119:745–765

    CAS  Google Scholar 

  • Sun LM, Zhang JZ, Mei L, Hu CH (2014a) Molecular cloning, promoter analysis and functional characterizationof APETALA1-like gene from precocious trifoliate orange (Poncirus trifoliata L. Raf.). Sci Hortic 178:95–105

    Article  CAS  Google Scholar 

  • Sun Y, Fan Z, Li X. Li J, Yin H (2014b) The APETALA1 and FRUITFUL homologs in Camellia japonica and their roles in double flower domestication. Mol Breed 33:821–834

    Article  CAS  Google Scholar 

  • Sung SK, Yu GH, An G (1999) Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiol 120:969–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang M, Tao YB, Xu ZF (2016) Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha. PeerJ 4:e1969. https://doi.org/10.7717/peerj.1969

    Article  PubMed  PubMed Central  Google Scholar 

  • Theißen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    Article  PubMed  Google Scholar 

  • Theißen G, Saedler H (1995) MADS-box genes in ontogeny and phylogeny of plants: Haeckel’s ‘biogenetic law’ revisited. Curr Opin Genet Dev 5:628–639

    Article  PubMed  Google Scholar 

  • Theißen G, Saedler H (2001) Floral quartets. Nature 409:469–471

    Article  PubMed  Google Scholar 

  • Theißen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, Winter KU, Saedler H (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42:115–149

    Article  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenbussche M, Theissen G, Van de Peer Y, Gerats T (2003) Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations. Nucleic Acids Res 31:4401–4409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto A, Fujita K, Takabe T (2010) Ectopic expression of DnaK chaperone from a halotolerant cyanobacterium Aphanothece halophytica induced the bolting without cold treatment in Eustoma grandiflorum. Plant Biotechnol 27:489–493

    Article  Google Scholar 

  • Yu H, Goh CJ (2000) Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant Physiol 123:1325–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to C-H Y from the National Science Council, Taiwan, ROC, Grant nos. NSC98-2622-B-005-001–CC2 and NSC99-2622-B-005-001-CC2. This work was also supported in part by the Ministry of Education, Taiwan, R.O.C. under the ATU plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Hsien Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuang, TH., Li, KH., Li, PF. et al. Functional analysis of an APETALA1-like MADS box gene from Eustoma grandiflorum in regulating floral transition and formation. Plant Biotechnol Rep 12, 115–125 (2018). https://doi.org/10.1007/s11816-018-0475-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-018-0475-x

Keywords

Navigation