Skip to main content
Log in

Modeling of a methanol synthesis process to utilize CO2 in the exhaust gas from an engine plant

  • Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We investigated the conversion of CO2 in the exhaust gas of an engine plant into methanol. The process consists of CO2 purification by an acid gas removal unit (AGRU), mixed reforming, and methanol synthesis. The AGRU removes a large amount of inert gas, yielding CO2 of 98% purity at a recovery rate of 90% for use as feed to the reformer. The reformer temperature of 900 °C led to the almost total consumption of CH4. In the methanol synthesis reaction, the utility temperature had a greater influence on the conversion and methanol production rate than the inlet temperature. The optimal temperature was determined as 180 °C. Because the amount of hydrogen in the reformer effluent produced by dry reforming was insufficient, the steam available in the engine plant was used for mixed (dry and steam) reforming. The steam increased the hydrogen and methanol production rate; however, the compression cost was too high, and there exists an optimal amount of steam in the feed. The techno-economic analysis of the optimal conditions showed that utilization of CO2 in the exhaust gas along with freely available steam is economically feasible and reduces CO2 emissions by over 85%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Gibbins and H. Chalmers, Energy Policy, 36, 4317 (2008).

    Article  Google Scholar 

  2. Y. Tan, W. Nookuea, H. Li, E. Thorin and J. Yan, Energy Convers. Manage., 118, 204 (2016).

    Article  CAS  Google Scholar 

  3. A. Coteron and A. N. Hayhurst, Chem. Eng. Sci., 49, 209 (1994).

    Article  CAS  Google Scholar 

  4. G. H. Graaf, E. J. Stamhuis and A. A. C. M. Beenackers, Chem. Eng. Sci., 43, 3185 (1988).

    Article  CAS  Google Scholar 

  5. K. L. Ng, Kinetics and modelling of dimethyl ether synthesis from synthesis gas, University of London (1999).

  6. M. Son, M.-J. Park, G. Kwak, H.-G. Park and K.-W. Jun, Korean J. Chem. Eng., 35, 355 (2017).

    Article  Google Scholar 

  7. N. Park, M.-J. Park, S.-C. Baek, K.-S. Ha, Y.-J. Lee, G. Kwak, H.-G. Park and K.-W. Jun, Fuel, 115, 357 (2014).

    Article  CAS  Google Scholar 

  8. A. Alizadeh, N. Mostoufi and F. Jalali-Farahani, Int. J. Chem. React. Eng., 5, A19 (2007).

    Google Scholar 

  9. H. Kordabadi and A. Jahanmiri, Chem. Eng. J., 108, 249 (2005).

    Article  CAS  Google Scholar 

  10. M. Shahrokhi and G. R. Baghmisheh, Chem. Eng. Sci., 60, 4275 (2005).

    Article  CAS  Google Scholar 

  11. F. Manenti, S. Cieri, M. Restelli and G. Bozzano, Comput. Chem. Eng., 48, 325 (2013).

    Article  CAS  Google Scholar 

  12. C. Zhang, K. W. Jun, R. Gao, G. Kwak and H. G. Park, Fuel, 190, 303 (2017).

    Article  CAS  Google Scholar 

  13. S. Shin, J. K. Lee and I. B. Lee, Energy, 200, 117506 (2020).

    Article  CAS  Google Scholar 

  14. N. Park, M.-J. Park, K.-S. Ha, Y.-J. Lee and K.-W. Jun, Fuel, 129, 163 (2014).

    Article  CAS  Google Scholar 

  15. L. E. Øi, Proc. SIMS2007 conference, Gøteborg, Sweden (2007).

  16. J. C. Polasek, G. A. Iglesias-Silva and J. A. Bullin, Proc. 71st GPA annual convention, Tulsa, OK, USA (1992).

  17. J. Polasek and J. A. Bullin, Proc. GPA regional meeting, Tulsa, OK, USA (1994).

  18. J. M. Douglas, Conceptual design of chemical processes, International edn. McGraw-Hill, New York (1988).

    Google Scholar 

  19. M. S. Peters, Plant design and economics for chemical engineers, McGraw-Hill, New York (1958).

    Google Scholar 

  20. W. D. Seider, J. D. Seader and D. R. Lewin, Product and process design principles: Synthesis, analysis and evaluation, Wiley, New York (2004).

    Google Scholar 

  21. R. K. Sinnott, Chemical engineering design, Pergamon, Oxford (1993).

    Google Scholar 

  22. S. M. Walas, Chemical process equipment: Selection and design, Elsevier Science & Technology Books, Oxford (1988).

    Google Scholar 

  23. Methanol Market Services Asia. https://www.methanolmsa.com.

  24. U.S. Energy Information Administration (EIA). https://www.eia.gov.

Download references

Acknowledgement

This research was supported by the Technology Development Program to Solve Climate Changes of the National Research Foundation (NRF), funded by the Ministry of Science and ICT of the Republic of Korea (No. 2021M1A2A2037010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Myung-June Park or Won Bo Lee.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, J.H., Kim, Y., Oh, SY. et al. Modeling of a methanol synthesis process to utilize CO2 in the exhaust gas from an engine plant. Korean J. Chem. Eng. 39, 1989–1998 (2022). https://doi.org/10.1007/s11814-022-1124-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1124-1

Keywords

Navigation