Skip to main content
Log in

Glutathione S-Transferase (GST) Identified from Giant Kelp Macrocystis pyrifera Increases the Copper Tolerance of Synechococcus elongatus PCC 7942

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The glutathione S-transferases gene family plays an important regulatory role in growth and development, and responses to environmental change. In this study, six complete GST genes (MpGST1, MpGST2, MpGST3, MpGST4, MpGST5, and MpGST6) were cloned from the gametophytes of brown alga Macrocystis pyrifera. Subsequent bioinformatics analysis showed that these six genes encoded proteins with 202, 216, 288, 201, 205, and 201 aa, respectively. Moreover, MpGST3 differs from the other GST genes. Phylogenetic analysis suggested that MpGST3 belongs to the Ure2p type GST. Domain analysis suggested that the other GSTs from M. pyrifera belong to the soluble GST family and form an independent branch with the GSTs found in the other macroalgae, suggesting that a new GST type was formed during macroalgal evolution. GST genes were upregulated in M. pyrifera when 2.5 mg L−1 Cu ions were added to the medium. Six GST genes were integrated into the genome of Synechococcus elongatus PCC 7942, and their functions were verified by measuring light absorbance, photosynthetic pigment content, and photosynthetic parameters of the transformed strains under 0.3 mg L−1 Cu ion stress. The results showed much higher levels of various parameters in the transformed strains than in the wild strain. The transformed strains (with the MpGST genes) showed significantly enhanced resistance to Cu ion stress, while the wild strain almost died. The results of this study lay a theoretical foundation for further research on the Cu ion stress resistance function of GSTs in M. pyrifera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data Availability Statement

The raw data generated in this study were deposited in Genbank with accession numbers OL362284, OL362285, OL362286, OL362287, OL362288, OL362289.

Abbreviations

GSH:

glutathione

GST:

glutathione S-transferase

ROS:

reactive oxygen species

PCR:

polymerase chain reaction

qPCR:

real-time quantitative polymerase chain reaction

OD750 :

optical density at 750 nm

Chla :

chlorophyll a

Car:

carotenoid

CDS:

coding protein sequence

PI:

isoelectric point

PSII:

photosystem II

CK:

control

References

  • Andrew, R., Reed, D. C., Harrer, S. L., and Clint, N. J., 2018. Improved estimates of net primary production, growth and standing crop of Macrocystis pyrifera in Southern California. Ecology, 99(9): 2132, DOI: https://doi.org/10.1002/ecy.2440.

    Article  Google Scholar 

  • Apte, S. C., and Day, G. M., 1998. Dissolved metal concentrations in the Torres Strait and Gulf of Papua. Marine Pollution Bulletin, 36(4): 298–304, DOI: https://doi.org/10.1016/S0025-326X(98)00188-X.

    Article  Google Scholar 

  • Aravantinou, A. F., Tsarpali, V., Dailianis, S., and Manariotis, I. D., 2015. Effect of cultivation media on the toxicity of ZnO nanoparticles to freshwater and marine microalgae. Ecotoxicology and Environmental Safety, 114: 109–116, DOI: https://doi.org/10.1016/j.ecoenv.2015.01.016.

    Article  Google Scholar 

  • Atsumi, S., Higashide, W., and Liao, J. C., 2009. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nature Biotechnology, 27(12): 1177–1180, DOI: https://doi.org/10.1038/nbt.1586.

    Article  Google Scholar 

  • Batley, G. E., 1995. Heavy metals and tributyltin in Australian coastal and estuarine waters. In: Pollution State of the Marine Environment Report for Australia. Zann, L. P., and Sutton, D., eds., Great Barrier Reef Marine Park Authority, Canberra, 63–72.

    Google Scholar 

  • Bolton, J. J., 2010. The biogeography of kelps (Laminariales, Phaeophyceae): A global analysis with new insights from recent advances in molecular phylogenetics. Helgoland Marine Research, 64(4): 263–279, DOI: https://doi.org/10.1007/s10152-010-0211-6.

    Article  Google Scholar 

  • Brown, M. T., and Newman, J. E., 2003. Physiological responses of Gracilariopsis longissima (S.G. Gmelin) Steentoft, L.M. Iryine and Farnham (Rhodophyceae) to sublethal copper. Aquatic Toxicology, 64(2): 201–213, DOI: https://doi.org/10.1016/S0166-445X(03)00054-7.

    Article  Google Scholar 

  • Cançado, G. M. A., De Rosa Jr., V. E., Fernandez, J. H., Maron, L. G., Jorge, R. A., and Menossi, M., 2005. Glutathione S-transferase and aluminum toxicity in maize. Functional Plant Biology, 32(11): 1045–1055, DOI: https://doi.org/10.1071/FP05158.

    Article  Google Scholar 

  • Chakraborty, P., Babu, P., Acharyya, T., and Bandyopadhyay, D., 2010. Stress and toxicity of biologically important transition metals (Co, Ni, Cu and Zn) on phytoplankton in a tropical freshwater system: An investigation with pigment analysis by HPLC. Chemosphere, 80(5): 548–553, DOI: https://doi.org/10.1016/j.chemosphere.2010.04.039.

    Article  Google Scholar 

  • Cid, A., Herrero, C., Torres, E., and Abalde, J., 1995. Copper toxicity on the marine microalga Phaeodactylum tricornutum: Effects on photosynthesis and related parameters. Aquatic Toxicology, 31(2): 165–174, DOI: https://doi.org/10.1016/0166-445X(94)00071-W.

    Article  Google Scholar 

  • Cock, J. M., Sterck, L., Rouzé, P., Scornet, D., Allen, A. E., Amoutzias, G., et al., 2012. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 465(7298): 617–621, DOI: https://doi.org/10.1038/nature09016.

    Article  Google Scholar 

  • Collén, J., Pioto, E., Pedersén, M., and Colepicolo, P., 2003. Induction of oxidative stress in the redmacroalga Gracilaria tenuistipitata by pollutant metals. Archives of Environmental Contamination and Toxicology, 45(3): 337–342, DOI: https://doi.org/10.1007/s00244-003-0196-0.

    Article  Google Scholar 

  • Contreras, L., Moenne, A., and Correa, J. A., 2010. Antioxidant responses in Scytosiphon lomentaria (Phaeophyceae) inhabiting copper-enriched coastal environments. Journal of Phycology, 41(6): 1184–1195, DOI: https://doi.org/10.1111/j.1529-8817.2005.00151.x.

    Article  Google Scholar 

  • Contreras-Porcia, L., Dennett, G., González, A., Vergara, E., Medina, C., Correa, J. A., et al., 2011. Identification of copper-induced genes in the marine alga Ulva compressa (Chlorophyta). Marine Biotechnology, 13(3): 544–556, DOI: https://doi.org/10.1007/s10126-010-9325-8.

    Article  Google Scholar 

  • Darko, E., Ambrus, H., Stefanovits-Banyai, E., Fodor, J., Bakos, F., and Barnabas, B., 2004. Aluminium toxicity, Al tolerance and oxidative stress in an Al-sensitive wheat genotype and in Al-tolerant lines developed by in vitro microspore selection. Plant Science, 166(3): 583–591, DOI: https://doi.org/10.1016/j.plantsci.2003.10.023.

    Article  Google Scholar 

  • Dawood, M., Cao, F., Jahangir, M. M., Zhang, G., and Wu, F., 2012. Alleviation of aluminum toxicity by hydrogen sulfide is related to elevated ATPase, and suppressed aluminum uptake and oxidative stress in barley. Journal of Hazardous Materials, s209–210(1): 121–128, DOI: https://doi.org/10.1016/j.jhazmat.2011.12.076.

    Article  Google Scholar 

  • Ding, Y., Miao, J. L., Li, G. Y., Wang, Q. F., Kan, G. F., and Wang, G. D., 2005. Effect of Cd on GSH and GSH-related enzymes of Chlamydomonas sp. ICE-L existing in Antarctic ice. Journal of Environmental Sciences, 17(4): 667–671, DOI: https://doi.org/10.1007/s11769-005-0024-8.

    Google Scholar 

  • Dixon, D. P., and Edwards, R., 2010. Roles for stress-inducible lambda glutathione transferases in flavonoid metabolism in plants as identified by ligand fishing. Journal of Biologycal Chemistry, 285(47): 36322–36329, DOI: https://doi.org/10.1074/jbc.M110.164806.

    Article  Google Scholar 

  • Ducat, D. C., Sachdeva, G., and Baker, S. D., 2011. Rewiring hydrogenase-dependent redox circuits in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 108(10): 3941–3946, DOI: https://doi.org/10.2307/41061040.

    Article  Google Scholar 

  • Edwards, R., Dixon, D. P., Cummins, I., Brazier-Hicks, M., and Skipsey, M., 2011. New perspectives on the metabolism and detoxification of synthetic compounds in plants. In: Organic Xenobiotics and Plants. Schröder, P., and Collins, C. D., eds., Springer, Berlin, 125–148.

    Chapter  Google Scholar 

  • Feng, L. X., 2006. Effects of environmental stress on the chlorophy fluorescence of 4 microalgal strains. Master thesis. Ocean University of China (in Chinese with English abstract).

  • Fernandes, J. C., and Henriques, F. S., 1991. Biochemical, physiological, and structural effects of excess copper in plants. Botanical Review, 57(3): 246–273, DOI: https://doi.org/10.2307/4354171.

    Article  Google Scholar 

  • Frova, C., 2003. The plant glutathione transferase gene family: Genomic structure, functions, expression and evolution. Plant Physiology, 119(4): 469–479, DOI: https://doi.org/10.1046/j.1399-3054.2003.00183.x.

    Article  Google Scholar 

  • Genty, B., Briantais, J. M., and Baker, N. R., 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta-General Subjects, 990(1): 87–92, DOI: https://doi.org/10.1016/S0304-4165(89)80016-9.

    Article  Google Scholar 

  • Gill, T., Dogra, V., Kumar, S., Ahuja, P. S., and Sreenivasulu, Y., 2011. Protein dynamics during seed germination under copper stress in Arabidopsis overexpressing Potentilla superoxide dismutase. Journal of Plant Research, 125(1): 165–172, DOI: https://doi.org/10.1007/s10265-011-0421-2.

    Article  Google Scholar 

  • Han, X. M., Yang, Z. L., Liu, Y. J., Yang, H. L., and Zeng, Q. Y., 2018. Genome-wide profiling of expression and biochemical functions of the Medicago glutathione S-transferase gene family. Plant Physiology and Biochemistry, 126(1): 126–133, DOI: https://doi.org/10.1016/j.plaphy.2018.03.004.

    Article  Google Scholar 

  • Hauke, J., and Kossowski, T., 2011. Comparison of values of Pearson’s and Spearman’s correlation coefficients on the same sets of data. Geographie Physique Quaternaire, 30(2): 87–93, DOI: https://doi.org/10.2478/v10117-011-0021-1.

    Google Scholar 

  • Havaux, M., 1998. Carotenoids as membrane stabilizers in chloroplasts. Trends in Plant Science, 3(4): 147–151, DOI: https://doi.org/10.1016/S1360-1385(98)01200-X.

    Article  Google Scholar 

  • Herzi, F., Jean, N., Zhao, H. Y., Mounier, S., Mabrouk, H. H., and Hlaili, A. S., 2013. Copper and cadmium effects on growth and extracellular exudation of the marine toxic dinoflagellate Alexandrium catenella: 3d-fluorescence spectroscopy approach. Chemosphere, 93(6): 1230–1239, DOI: https://doi.org/10.1016/j.chemosphere2013.06.084.

    Article  Google Scholar 

  • Hu, B., Jin, J. P., Guo, A. Y., Zhang, H., Luo, J. C., and Gao, G., 2014. GSDS 2.0: An upgraded gene features visualization server. Bioinformatics, 31(8): 1296–1297, DOI: https://doi.org/10.1093/bioinformatics/btu817.

    Article  Google Scholar 

  • Hurd, C. L., Harrison, P. J., Bischof, K., and Lobban, C. S., 2014. Physico-chemical factors as environmental stressors in seaweed biology. In: Seaweed Ecology and Physiology. Cambridge University Press, London, 294–348.

    Chapter  Google Scholar 

  • Jiang, C. D., Gao, H. Y., and Zou, Q., 2003. Changes of donor and accepter side in photosystem II complex induced by iron deficiency in attached-soybean and maize leaves. Photosynthetica, 41(2): 267–271, DOI: https://doi.org/10.1023/B:PHOT.0000011960.95482.91.

    Article  Google Scholar 

  • Khan, W., Rayirath, U. P., Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M., et al., 2009. Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28(4): 386–399, DOI: https://doi.org/10.1007/s00344-009-9103-x.

    Article  Google Scholar 

  • Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K., 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6): 6, DOI: https://doi.org/10.1093/molbev/msy096.

    Article  Google Scholar 

  • Lan, T., Yang, Z. L., Yang, X., Liu, Y. J., Wang, X. R., and Zeng, Q. Y., 2009. Extensive functional diversification of the Populus glutathione S-transferase supergene family. Plant Cell, 21(12): 3749–3766, DOI: https://doi.org/10.1105/tpc.109.070219.

    Article  Google Scholar 

  • Li, Y. Q., Horsman, M., Wang, B., Wu, N., and Lan, C. Q., 2008. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology, 81(4): 629–636, DOI: https://doi.org/10.1007/s00253-008-1681-1.

    Article  Google Scholar 

  • Liang, Y., Feng, L. X., Yin, C. L., and Cao, C. H., 2007. Current status and prospect of chlorophyll fluorescence technique in the study of responses of microalgae to environmental stress. Marine Sciences, 31(1): 71–76 (in Chinese with English abstract).

    Google Scholar 

  • Liang, Y., Wang, S., Feng, L. X., and Tian, C. Y., 2008. Effects of heavy metal stress on the growth and chlorophyll fluorescence of Chaetoceros gracilis. Periodical of Ocean University of China, 38(1): 59–67 (in Chinese with English abstract).

    Google Scholar 

  • Lichtenthaler, H. K., and Buschmann, C., 2001. Chlorophylls and carotenoids: Measurements and characterization by UV-Vis spectroscopy. In: Current Protocols in Food Analytical Chemistry. Wrolstad, R. E., et al., eds., John Wiley and Sons, New York, F4.3.1–F4.3.8, DOI: https://doi.org/10.1002/0471142913.faf0402s01.

    Google Scholar 

  • Liu, H. J., Tang, Z. X., Han, X. M., Yang, Z. L., Zhang, F. M., Yang, H. L., et al., 2015. Divergence in enzymatic activities in the soybean GST supergene family provides new insight into the evolutionary dynamics of whole-genome duplicates. Molecular Biology and Evolution, 11: 2844–2859, DOI: https://doi.org/10.1093/molbev/msv156.

    Article  Google Scholar 

  • Liu, Y. J., Han, X. M., Ren, L. L., Yang, H. L., and Zeng, Q. Y., 2013. Functional divergence of the glutathione S-transferase supergene family in Physcomitrella patens reveals complex patterns of large gene family evolution in land plants. Journal of Plant Physiology, 161: 773–786, DOI: https://doi.org/10.1104/pp.112.205815.

    Article  Google Scholar 

  • Livak, K. J., and Schmittgen, T. D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4): 402–408, DOI: https://doi.org/10.1006/meth.2001.

    Article  Google Scholar 

  • Maxwell, K., and Johnson, G. N., 2000. Chlorophyll fluorescencea practical guide. Journal of Experimental Botany, 51(345): 659–668, DOI: https://doi.org/10.1093/jexbot/51.345.659.

    Article  Google Scholar 

  • Min, H. T., and Golden, S. S., 2000. A new circadian class 2 gene, opcA, whose product is important for reductant production at night in Synechococcus elongatus PCC 7942. Journal of Systematic Bacteriology, 182(21): 6214–6221, DOI: https://doi.org/10.1128/JB.182.21.6214-6221.2000.

    Article  Google Scholar 

  • Navarrete, I. A., Kim, D. Y., Wilcox, C., Reed, D. C., and Wilcox, B. H., 2021. Effects of depth-cycling on nutrient uptake and biomass production in the giant kelp Macrocystis pyrifera. Renewable and Sustainable Energy Reviews, 141: 110747, DOI: https://doi.org/10.1016/j.rser.2021.110747.

    Article  Google Scholar 

  • Nianiou-Obeidat, I., Madesis, P., Kissoudis, C., Voulgari, G., Chronopoulou, E., Tsaftaris, A., et al., 2017. Plant glutathione transferase-mediated stress tolerance: Functions and biotechnological applications. Plant Cell Reports, 36(6): 791–805, DOI: https://doi.org/10.1007/s00299-017-2139-7.

    Article  Google Scholar 

  • Okamoto, O. K., Asano, C. S., Aidar, E., and Colepicolo, P., 1996. Effects of cadmium on growth and superoxide dismutase activity of the marine microalga Tetraselmis gracilis (Prasinophycaea). Journal of Applied Phycology, 32: 74–79, DOI: https://doi.org/10.1111/j.0022-3646.1996.00074.x.

    Article  Google Scholar 

  • Perrot, T., Rossi, N., A Ménesguen, and Dumas, F., 2014. Modelling green macroalgal blooms on the coasts of Brittany, France to enhance water quality management. Journal of Marine Systems, 132: 38–53, DOI: https://doi.org/10.1016/j.jmarsys.2013.12.010.

    Article  Google Scholar 

  • Plekhanov, S. E., and Chemeris, Y. K., 2003. Early toxic effects of zinc, cobalt, and cadmium on photosynthetic activity of the green alga Chlorella pyenoidosa chick S-39. Biological Bulletin, 30(5): 506–511, DOI: https://doi.org/10.1023/A:1025806921291.

    Article  Google Scholar 

  • Rijstenbil, J. W., and Gerringa, L. J. A., 2002. Interactions of algal ligands, metal complexation and availability, and cell responses of the diatom Ditylum brightwellii with a gradual increase in copper. Aquatic Toxicology, 56(2): 115–131, DOI: https://doi.org/10.1016/s0166-445x(01)00188-6.

    Article  Google Scholar 

  • Rijstenbil, J. W., Derksen, J., Gerringa, L., Poortvliet, T., and Wijnholds, J. A., 1994. Oxidative stress induced by copper: Defense and damage in the marine planktonic diatom Dictylum brightwellii grown in continuous cultures with high and low zinc levels. Marine Biology, 119: 583–590, DOI: https://doi.org/10.1007/BF00354321.

    Article  Google Scholar 

  • Sandmann, G., and Böger, P., 1980. Copper defieciency and toxicity in Scenedesmus. Zeitschrift für Pflanzenphysiologie, 98(1): 53–59, DOI: https://doi.org/10.1016/S0044-328X(80)80219-4.

    Article  Google Scholar 

  • Sharma, R., Brown, D., Awasthi, S., Yang, Y., Sharma, A., Patrick, B., et al., 2004. Transfection with 4-hydroxynonenal-metabolizing glutathione S-transferase isozymes leads to phenotypic transformation and immortalization of adherent cells. Febs Journal, 271(9): 1690–1701, DOI: https://doi.org/10.1111/j.1432-1033.2004.04067.x.

    Google Scholar 

  • Shukla, P., and Edwards, M. S., 2017. Elevated pCO2 is less detrimental than increased temperature to early development of the giant kelp, Macrocystis pyrifera (Phaeophyceae, Laminariales). Phycologia, 56(6): 638–648, DOI: https://doi.org/10.2216/16-120.1.

    Article  Google Scholar 

  • Simkovsky, R., Daniels, E. F., Tang, K., Huynh, S. C., Golden, S. S., and Brahamsha, B., 2012. Impairment of O-antigen production confers resistance to grazing in a model amoeba-cyanobacterium predator-prey system. Proceedings of the National Academy of Sciences of the United States of America, 109(41): 16678–16683, DOI: https://doi.org/10.1073/pnas.1214904109.

    Article  Google Scholar 

  • Smith, P. K., Krohn, R. I., and Hermanson, G. T., 1985. Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 163(1): 76–85, DOI: https://doi.org/10.1016/0003-2697(85)90442-7.

    Article  Google Scholar 

  • Stauber, J. L., and Florence, T. M., 1989. The effect of culture medium on metal toxicity to the marine diatom Nitzschia closterium and the freshwater green alga Chlorella pyrenoidosa. Journal of Applied Water Engineering and Research, 23(7): 907–911, DOI: https://doi.org/10.1016/0043-1354(89)90016-X.

    Article  Google Scholar 

  • Taniguchi, Y., Nishikawa, T., Kondo, T., and Oyama, T., 2012. Overexpression of lalA, a paralog of labA, is capable of affecting both circadian gene expression and cell growth in the cyanobacterium Synechococcus elongatus PCC 7942. Febs Letters, 586(6): 753–759, DOI: https://doi.org/10.1016/j.febslet.2012.01.035.

    Article  Google Scholar 

  • Wagner, U., Edwards, R., Dixon, D. P., and Mauch, F., 2002. Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Molecular Biology, 49(5): 515–532, DOI: https://doi.org/10.1023/A:1015557300450.

    Article  Google Scholar 

  • Wang, Y. T., Fan, X., Gao, G., Beardall, J., and Ye, N. H., 2020. Decreased motility of flagellated microalgae long-term acclimated to CO2-induced acidified waters. Nature Climate Change, 10(6): 561–567, DOI: https://doi.org/10.1038/s41558-020-0776-2.

    Article  Google Scholar 

  • Wiencke, C., and Bischof, K., 2012. Seaweed Biology: Novel Insights into Ecophysiology, Ecology and Utilization. Springer, Berlin, 507pp.

    Book  Google Scholar 

  • Xiao, L., Gao, R. F., and Sui, F. G., 2008. Effects of chloride stress on the photosynthesis and chlorophyll content of Chinese cabbage seedlings. Soil and Fertilizer Sciences in China, 2(2): 44–47 (in Chinese with English abstract).

    Google Scholar 

  • Yang, G. Y., Wang, Y. C., Xia, D., Gao, C. Q., Wang, C., and Yang, C, P., 2014a. Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species. Plant Cell Tissue and Organ Culture, 117(1): 99–112, DOI: https://doi.org/10.1007/s11240-014-0424-5.

    Article  Google Scholar 

  • Yang, Q., Liu, Y. J., and Zeng, Q. Y., 2014b. Biochemical functions of the glutathione transferase supergene family of Larix kaempferi. Plant Physiology and Biochemistry, 77: 99–107, DOI: https://doi.org/10.1016/j.plaphy.2014.02.003.

    Article  Google Scholar 

  • Zar, J., 1999. Biostatistical Analysis. Prentice-Hall, Englewood Cliffs, 941pp.

    Google Scholar 

  • Zhang, C. H., Wu, Z. Y., Ju, T., and Ge, Y., 2013. Purification and identification of glutathione-S-transferase in rice root under cadmium stress. Rice Science, 20(3): 173–178, DOI: https://doi.org/10.1016/s1672-6308(13)60114-6.

    Article  Google Scholar 

  • Zhang, G. J., Jiang, H., Zheng, L. Q., Chen, J., Qiu, D. L., and Liu, X. H., 2009. Effect of copper stress on photosynthesis of navel orange seedlings. Chinese Journal of Eco-Agriculture, 17(1): 130–134, DOI: https://doi.org/10.3724/SP.J.1011.2009.00130 (in Chinese with English abstrwact).

    Article  Google Scholar 

  • Zhang, X. W., Zhang, J., Wang, Y. T., Xu, D., and Ye, N. H., 2021. The oxylipin messenger 1, ctenl induced rapid responses in kelp Macrocystis pyrifera. Physiologia Plantarum, 172: 1641–1652, DOI: https://doi.org/10.1111/ppl.13358.

    Article  Google Scholar 

  • Zhang, Y. F., Gu, Z. P., Ren, Y. D., Wang, L., Zhang, J., Liang, C. W., et al., 2021. Integrating transcriptomics and metabolomics to characterize metabolic regulation to elevated CO2 in Chlamydomonas Reinhardtii. Marine Biotechnology (NY), 23(2): 255–275, DOI: https://doi.org/10.1007/s10126-021-10021-y.

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Key R&D Program of China (No. 2018YFD0900305), the National Natural Science Foundation of China (No. 31770393), the Major Scientific and Technological Innovation Project of Shandong Provincial Key Research and Development Program (No. 2019JZZY020706), the Central Public-Interest Scientific Institute Basal Research Fund, CAFS (Nos. 2020TD 19 and 2020TD27), the China Agriculture Research System (CARS-50), the Taishan Scholars Funding of Shandong Province, and the Taishan Scholars Funding and Talent Projects of Distinguished Scientific Scholars in Agriculture and Young Taishan Scholars Program to DONG Xu.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengwei Liang or Naihao Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Z., Ren, Y., Liang, C. et al. Glutathione S-Transferase (GST) Identified from Giant Kelp Macrocystis pyrifera Increases the Copper Tolerance of Synechococcus elongatus PCC 7942. J. Ocean Univ. China 22, 777–789 (2023). https://doi.org/10.1007/s11802-023-5372-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-023-5372-4

Key words

Navigation