Skip to main content
Log in

Modelling and Simulation of Solid Particle Sedimentation in an Incompressible Newtonian Fluid

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

We present in this paper a method that simulates the motion of rigid particles in a Newtonian fluid. This method is based on a variational formulation throughout the fluid/solid domain, with constraints on the unknown and on the test functions. The rigid motion of the particle is enforced by penalizing the strain tensor on the rigid domain for canceling the deformation rate in the volume occupied by the particle. The time discretization is performed by using the characteristics method. We developed a code from FreeFem++ that simulates Stokes flows or Navier–Stokes flows (low Reynolds number). A simulation of an elliptical rigid particle sedimentation in a Newtonian fluid has shown the importance of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hu, H.H., Patankar, N.A., Zhu, M.Y.: Direct numerical simulations of fluid–solid systems using the arbitrary Lagrangian–Eulerian technique. J. Comput. Phys. 169(2), 427–462 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lefebvre, A., Maury, B.: Apparent viscosity of a mixture of a Newtonian fluid and interacting particles. C. R. Méc. 333(12), 923–933 (2005)

    Article  MATH  Google Scholar 

  3. Maury, B.: Direct simulations of 2D fluid-particle flows in biperiodic domains. J. Comput. Phys. 156(2), 325–351 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atamian, C., Joly, P.: Une analyse de la méthode des domaines fictifs pour le problème de Helmholtz extérieur. RAIRO-Modélisation mathématique et analyse numérique 27(3), 1251–1288 (1993)

    MATH  Google Scholar 

  5. Glowinski, R., Pan, T.-W., Hesla, T.I., Joseph, D.D., Periaux, J.: A fictitious domain method with distributed Lagrange multipliers for the numerical simulation of particulate flow. Contemp. Math. 218, 121–137 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Glowinski, R., Kuznetsov, Y.: On the solution of the Dirichlet problem for linear elliptic operators by a distributed Lagrange multiplier method. C. R. Acad. Sci. Ser. I Math. 327(7), 693–698 (1998)

  7. Girault, V., Glowinski, R., Pan, T.W.: A fictitious-domain method with distributed multiplier for the Stokes problem. Appl. Nonlinear Anal. 327(7), 159–174 (2002)

    Article  MATH  Google Scholar 

  8. Girault, V., Glowinski, R., Pan, T.W.: A distributed Lagrange multiplier/fictitious domain method for flows around moving rigid bodies: application to particulate flow. Int. J. Numer. Methods Fluids 30(8), 1043–1066 (1999)

    Article  MATH  Google Scholar 

  9. Glowinski, R., Pan, T.W., Hesla, T.I., Joseph, D.D., Periaux, J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169(2), 363–426 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Caltagirone, J., Vincent, S.: Tensorial penalisation method for solving Navier–Stokes equations. C. R. Acad. Sci. Ser. IIB Mech. 329(8), 607–613 (2001)

    Google Scholar 

  11. Vincent, S., De Motta, J.S.B., Sarthou, A., Estivalezes, J.L., Simonin, O., Climent, E.: A Lagrangian VOF tensorial penalty method for the DNS of resolved particle-laden flows. J. Comput. Phys. 256, 582–614 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Vincent, S., Randrianarivelo, T.N., Pianet, G., Caltagirone, J.P.: Local penalty methods for flows interacting with moving solids at high Reynolds numbers. Comput. Fluids 36(5), 902–913 (2007)

    Article  MATH  Google Scholar 

  13. Janela, J., Lefebvre, A., Maury, B.: A penalty method for the simulation of fluid–rigid body interaction. In: ESAIM Proceedings, vol 14, pp 115–123 (2005)

  14. Zouaoui, S.: Modlisation et Simulation des Ecoulements Multiphasiques bases sur une Approche Multi-Echelles. Application au Transport Solide. Ph.D. thesis, Universit Mouloud Mammeri de Tizi-Ouzou (2016)

  15. Lefebvre, A.: Fluid-particle simulations with FreeFem++ In: ESAIM Proceedings, vol 18, pp 120–132 (2007)

  16. http://www.freefem.org/

  17. Pironneau, O., Liou, J., Tezduyar, T.: Characteristic-Galerkin and Galerkin/least-squares space-time formulations for the advection-diffusion equation with time-dependent domains. Comput. Methods Appl. Mech. Eng. 100, 117–141 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Batchelor, G.K., Green, J.-T.: The hydrodynamic interaction of two small freely-moving spheres in a linear flow field. J. Fluid Mech. 56(02), 375–400 (1972)

    Article  MATH  Google Scholar 

  19. Bost, C.: Mthodes Level-Set et pnalisation pour le calcul dinteractions fluidestructure. Ph.D. thesis, Universit Joseph-Fourier-Grenoble I (2008)

  20. Coquerelle, M., Cottet, G.-H.: A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies. J. Comput. Phys. 227(21), 9121–9137 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Glowinski, R., Pan, T.-W., Hesla, T.I., Joseph, D.D., Periaux, J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169(2), 363–426 (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah Zouaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zouaoui, S., Djebouri, H., Bilek, A. et al. Modelling and Simulation of Solid Particle Sedimentation in an Incompressible Newtonian Fluid. Math.Comput.Sci. 11, 527–539 (2017). https://doi.org/10.1007/s11786-017-0315-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-017-0315-3

Keywords

Mathematics Subject Classification

Navigation