Skip to main content
Log in

Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation in microbial fuel cells (MFCs)

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Renewable algae biomass, Scenedesmus obliquus, was used as substrate for generating electricity in two chamber microbial fuel cells (MFCs). From polarization test, maximum power density with pretreated algal biomass was 102 mW·m−2 (951 mW·m−3) at current generation of 276 mA·m−2. The individual electrode potential as a function of current generation suggested that anodic oxidation process of algae substrate had limitation for high current generation in MFC. Total chemical oxygen demand (TCOD) reduction of 74% was obtained when initial TCOD concentration was 534 mg ·L−1 for 150 h of operation. The main organic compounds of algae oriented biomass were lactate and acetate, which were mainly used for electricity generation. Other byproducts such as propionate and butyrate were formed at a negligible amount. Electrochemical Impedance Spectroscopy (EIS) analysis pinpointed the charge transfer resistance (112 Ω) of anode electrode, and the exchange current density of anode electrode was 1214 nA·cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Schamphelaire L, van den Bossche L, Dang H S, Höfte M, Boon N, Rabaey K, Verstraete W. Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environmental Science & Technology, 2008, 42(8): 3053–3058

    Article  Google Scholar 

  2. Lee S H, Kondaveeti S, Min B, Park H D. Enrichment of clostridia during the operation of an external-powered bio-electrochemical denitrification system. Process Biochemistry, 2013, 48(2): 306–311

    Article  CAS  Google Scholar 

  3. Sander K, Murthy G. Life cycle analysis of algae biodiesel. International Journal of Life Cycle Assessment, 2010, 15(7): 704–714

    Article  CAS  Google Scholar 

  4. Scott S A, Davey M P, Dennis J S, Horst I, Howe C J, Lea-Smith D J, Smith A G. Biodiesel from algae: challenges and prospects. Current Opinion in Biotechnology, 2010, 21(3): 277–286

    Article  CAS  Google Scholar 

  5. Pyle D J, Garcia R A, Wen Z. Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. Journal of Agricultural and Food Chemistry, 2008, 56(11): 3933–3939

    Article  CAS  Google Scholar 

  6. Mata T M, Martins A A, Caetano N S. Microalgae for biodiesel production and other applications: A review. Renewable & Sustainable Energy Reviews, 2010, 14(1): 217–232

    Article  CAS  Google Scholar 

  7. Patil P D, Gude V G, Mannarswamy A, Deng S, Cooke P, Munson-McGee S, Rhodes I, Lammers P, Nirmalakhandan N. Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresource Technology, 2011, 102(1): 118–122

    Article  CAS  Google Scholar 

  8. Golueke C G, Oswald W J. Power from solar energy—Via algaeproduced methane. Solar Energy, 1963, 7(3): 86–92

    Article  CAS  Google Scholar 

  9. Maneeruttanarungroj C, Lindblad P, Incharoensakdi A. A newly isolated green alga, Tetraspora sp. CU2551, from Thailand with efficient hydrogen production. International Journal of Hydrogen Energy, 2010, 35(24): 13193–13199

    Article  CAS  Google Scholar 

  10. Vologni V, Kakarla R, Angelidaki I, Min B. Increased power generation from primary sludge by a submersible microbial fuel cell and optimum operational conditions. Bioprocess and Biosystems Engineering, 2013, 36(5): 635–642

    Article  CAS  Google Scholar 

  11. Wang H, Lu L, Cui F, Liu D, Zhao Z, Xu Y. Simultaneous bioelectrochemical degradation of algae sludge and energy recovery in microbial fuel cells. RSC Advances, 2012, 2(18): 7228–7234

    Article  CAS  Google Scholar 

  12. Velasquez-Orta S B, Curtis T P, Logan B E. Energy from algae using microbial fuel cells. Biotechnology and Bioengineering, 2009, 103(6): 1068–1076

    Article  CAS  Google Scholar 

  13. Rashid N, Cui Y F, Saif Ur Rehman M, Han J I. Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell. Science of the Total Environment, 2013, 456-457: 91–94

    Article  CAS  Google Scholar 

  14. Mandal S, Mallick N. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology, 2009, 84(2): 281–291

    Article  CAS  Google Scholar 

  15. Becker E W. Micro-algae as a source of protein. Biotechnology Advances, 2007, 25(2): 207–210

    Article  CAS  Google Scholar 

  16. Nguyen T A D, Kim K R, Nguyen M T, Kim M S, Kim D, Sim S J. Enhancement of fermentative hydrogen production from green algal biomass of Thermotoga neapolitana by various pretreatment methods. International Journal of Hydrogen Energy, 2010, 35(23): 13035–13040

    Article  CAS  Google Scholar 

  17. APHA. Standard Methods for the Examinatinon of Water and Wastewater. Washington, D C: American Public Health Association, 2005

    Google Scholar 

  18. Ludwig T G, Goldberg J V. The anthrone method for the determination of carbohydrates in foods and in oral rinsing. Journal of Dental Research, 1956, 35(1): 90–94

    Article  CAS  Google Scholar 

  19. Mohan Y, Das D. Effect of ionic strength, cation exchanger and inoculum age on the performance of Microbial Fuel Cells. International Journal of Hydrogen Energy, 2009, 34(17): 7542–7546

    Article  CAS  Google Scholar 

  20. Chae K J, Choi M J, Lee J W, Kim K Y, Kim I S. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresource Technology, 2009, 100(14): 3518–3525

    Article  CAS  Google Scholar 

  21. Kim J R, Jung S H, Regan J M, Logan B E. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresource Technology, 2007, 98(13): 2568–2577

    Article  CAS  Google Scholar 

  22. Huang L, Zeng R J, Angelidaki I. Electricity production from xylose using a mediator-less microbial fuel cell. Bioresource Technology, 2008, 99(10): 4178–4184

    Article  CAS  Google Scholar 

  23. Niessen J, Schröder U, Scholz F. Exploiting complex carbohydrates for microbial electricity generation — a bacterial fuel cell operating on starch. Electrochemistry Communications, 2004, 6(9): 955–958

    Article  CAS  Google Scholar 

  24. Min B, Kim J, Oh S, Regan J M, Logan B E. Electricity generation from swine wastewater using microbial fuel cells. Water Research, 2005, 39(20): 4961–4968

    Article  CAS  Google Scholar 

  25. Jiang J, Zhao Q, Zhang J, Zhang G, Lee D J. Electricity generation from bio-treatment of sewage sludge with microbial fuel cell. Bioresource Technology, 2009, 100(23): 5808–5812

    Article  CAS  Google Scholar 

  26. Venkata Mohan S, Mohanakrishna G, Srikanth S, Sarma P N. Harnessing of bioelectricity in microbial fuel cell (MFC) employing aerated cathode through anaerobic treatment of chemical wastewater using selectively enriched hydrogen producing mixed consortia. Fuel, 2008, 87(12): 2667–2676

    Article  Google Scholar 

  27. Zuo Y, Maness P C, Logan B E. Electricity production from steamexploded corn stover biomass. Energy & Fuels, 2006, 20(4): 1716–1721

    Article  CAS  Google Scholar 

  28. Huang L, Angelidaki I. Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells. Biotechnology and Bioengineering, 2008, 100(3): 413–422

    Article  CAS  Google Scholar 

  29. Liu Z, Li X, Jia B, Zheng Y, Fang L, Yang Q, Wang D, Zeng G. Production of electricity from surplus sludge using a single chamber floating-cathode microbial fuel cell. Water Science and Technology, 2009, 60(9): 2399–2404

    Article  CAS  Google Scholar 

  30. Venkata Mohan S, Mohanakrishna G, Velvizhi G, Babu V L, Sarma P N. Bio-catalyzed electrochemical treatment of real field dairy wastewater with simultaneous power generation. Biochemical Engineering Journal, 2010, 51(1-2): 32–39

    Article  CAS  Google Scholar 

  31. Fan Y, Sharbrough E, Liu H. Quantification of the internal resistance distribution of microbial fuel cells. Environmental Science & Technology, 2008, 42(21): 8101–8107

    Article  CAS  Google Scholar 

  32. Kondaveeti S, Min B. Nitrate reduction with biotic and abiotic cathodes at various cell voltages in bioelectrochemical denitrification system. Bioprocess and Biosystems Engineering, 2013, 36(2): 231–238

    Article  CAS  Google Scholar 

  33. Ramasamy R P, Ren Z, Mench M M, Regan J M. Impact of initial biofilm growth on the anode impedance of microbial fuel cells. Biotechnology and Bioengineering, 2008, 101(1): 101–108

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Booki Min.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondaveeti, S., Choi, K.S., Kakarla, R. et al. Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation in microbial fuel cells (MFCs). Front. Environ. Sci. Eng. 8, 784–791 (2014). https://doi.org/10.1007/s11783-013-0590-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-013-0590-4

Keywords

Navigation