Skip to main content
Log in

Markov chain-based platoon recognition model in mixed traffic with human-driven and connected and autonomous vehicles

网联自动驾驶环境下基于马尔可夫链理论的混合交通流车队识别模型

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Many vehicle platoons are interrupted while traveling on roads, especially at urban signalized intersections. One reason for such interruptions is the inability to exchange real-time information between traditional human-driven vehicles and intersection infrastructure. Thus, this paper develops a Markov chain-based model to recognize platoons. A simulation experiment is performed in Vissim based on field data extracted from video recordings to prove the model’s applicability. The videos, recorded with a high-definition camera, contain field driving data from three Tesla vehicles, which can achieve Level 2 autonomous driving. The simulation results show that the recognition rate exceeds 80% when the connected and autonomous vehicle penetration rate is higher than 0.7. Whether a vehicle is upstream or downstream of an intersection also affects the performance of platoon recognition. The platoon recognition model developed in this paper can be used as a signal control input at intersections to reduce the unnecessary interruption of vehicle platoons and improve traffic efficiency.

摘要

鉴于车队在城市道路信号交叉口通行时常被交叉口信号灯所打断,造成不必要的停车,致使交叉口通行能力下降、尾气排放增加以及燃油消耗升高,本文面向未来网联自动驾驶环境,基于马尔可夫链理论,构建了混合交通流下的车队识别模型。此外,本文借助能够实现L2级自动驾驶技术的特斯拉车辆,设计并组织实施了网联自动驾驶环境下的全样本交通流视频采集实验,并利用视频识别技术提取车辆轨迹数据。最后,利用实测数据和交通仿真软件Vissim,进行网联自动驾驶环境下的车队识别仿真实验。仿真结果表明,当网联自动驾驶车辆渗透率高于0.7 时,车队识别率超过80%。另外,仿真结果还表明,车队识别位置同样影响车队识别率,例如在交叉口上游与下游分别进行车队识别时模型性能不同。本文所构建的车队识别模型能够为未来网联自动驾驶环境下的信号协调控制提供输入参数,以减少城市干线车队的不必要停车,进而提高城市交通运行效率。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. ZHAO Wei-ming, NGODUY D, SHEPHERD S, et al. A platoon based cooperative eco-driving model for mixed automated and human-driven vehicles at a signalised intersection [J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 802–821. DOI: https://doi.org/10.1016/j.trc.2018.05.025.

    Article  Google Scholar 

  2. ZHOU Jia-zu, ZHU Feng. Analytical analysis of the effect of maximum platoon size of connected and automated vehicles [J]. Transportation Research Part C: Emerging Technologies, 2021, 122: 102882. DOI: https://doi.org/10.1016/j.trc.2020.102882.

    Article  Google Scholar 

  3. LI Bai-bing. Stochastic modeling for vehicle platoons (I): Dynamic grouping behavior and online platoon recognition [J]. Transportation Research Part B: Methodological, 2017, 95: 364–377. DOI: https://doi.org/10.1016/j.trb.2016.07.019.

    Article  Google Scholar 

  4. MA Fang-wu, YANG Yu, WANG Jia-wei, et al. Eco-driving-based cooperative adaptive cruise control of connected vehicles platoon at signalized intersections [J]. Transportation Research Part D: Transport and Environment, 2021, 92: 102746. DOI: https://doi.org/10.1016/j.trd.2021.102746.

    Article  Google Scholar 

  5. LUO Si-da, ZHANG Shuai. Dynamic signal control for at-grade intersections under preliminary autonomous vehicle environment [J]. Journal of Central South University, 2019, 26(4): 893–904. DOI: https://doi.org/10.1007/s11771-019-4058-y.

    Article  MathSciNet  Google Scholar 

  6. YI Zi-wei, LU Wen-qi, XU Ling-hui, et al. Intelligent back-looking distance driver model and stability analysis for connected and automated vehicles [J]. Journal of Central South University, 2020, 27(11): 3499–3512. DOI: https://doi.org/10.1007/s11771-020-4560-2.

    Article  Google Scholar 

  7. CHEN Dan-jue, SRIVASTAVA A, AHN S. Harnessing connected and automated vehicle technologies to control lane changes at freeway merge bottlenecks in mixed traffic [J]. Transportation Research Part C: Emerging Technologies, 2021, 123: 102950. DOI: https://doi.org/10.1016/j.trc.2020.102950.

    Article  Google Scholar 

  8. GONG Si-yuan, DU Li-li. Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles [J]. Transportation Research Part B: Methodological, 2018, 116: 25–61. DOI: https://doi.org/10.1016/j.trb.2018.07.005.

    Article  Google Scholar 

  9. WANG Zhi-zhong, HUANG Xiang, LIANG Yu-ru. Oil-gas reservoir lithofacies stochastic modeling based on one- to three-dimensional Markov chains [J]. Journal of Central South University, 2018, 25(6): 1399–1408. DOI: https://doi.org/10.1007/s11771-018-3835-3.

    Article  Google Scholar 

  10. XIA Yu-tong. Applications of Markov chain in forecast [J]. Journal of Physics: Conference Series, 2021, 1848(1): 012061. DOI: https://doi.org/10.1088/1742-6596/1848/1/012061.

    Google Scholar 

  11. CAVERS M, VASUDEVAN K. Spatio-temporal complex Markov chain (SCMC) model using directed graphs: Earthquake sequencing [J]. Pure and Applied Geophysics, 2015, 172(2): 225–241. DOI: https://doi.org/10.1007/s00024-014-0850-7.

    Article  Google Scholar 

  12. LESNE A. Complex networks: From graph theory to biology [J]. Letters in Mathematical Physics, 2006, 78(3): 235–262. DOI: https://doi.org/10.1007/s11005-006-0123-1.

    Article  MathSciNet  MATH  Google Scholar 

  13. HUANG Xiang, WANG Zhi-zhong, GUO Jian-hua. Theoretical generalization of Markov chain random field from potential function perspective [J]. Journal of Central South University, 2016, 23(1): 189–200. DOI: https://doi.org/10.1007/s11771-016-3062-8.

    Article  Google Scholar 

  14. MAO Cheng-yuan, BAO Le-wen, YANG Sheng-de, et al. Analysis and prediction of pedestrians’ violation behavior at the intersection based on a Markov chain [J]. Sustainability, 2021, 13(10): 5690. DOI: https://doi.org/10.3390/su13105690.

    Article  Google Scholar 

  15. YANG Fan, TANG Xiao-ying, GAN Ying-xin, et al. Forecast of freight volume in Xi’an based on gray GM (1, 1) model and Markov forecasting model [J]. Journal of Mathematics, 2021, 2021: 6686786. DOI: https://doi.org/10.1155/2021/6686786.

    MathSciNet  Google Scholar 

  16. ZHANG Wei-bin, FENG Yao-yao, LU Kai, et al. Speed prediction based on a traffic factor state network model [J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(5): 3112–3122. DOI: https://doi.org/10.1109/TITS.2020.2979924.

    Article  Google Scholar 

  17. TIAPRASERT K, ZHANG Yun-long, YE Xin. Platoon recognition using connected vehicle technology [J]. Journal of Intelligent Transportation Systems, 2019, 23(1): 12–27. DOI: https://doi.org/10.1080/15472450.2018.1476146.

    Article  Google Scholar 

  18. TIAPRASERT K, ZHANG Y L, WANG X B, et al. Queue length estimation using connected vehicle technology for adaptive signal control [J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4): 2129–2140. DOI: https://doi.org/10.1109/TITS.2015.2401007.

    Article  Google Scholar 

  19. GOODALL N J, PARK B B, SMITH B L. Microscopic estimation of arterial vehicle positions in a low-penetration-rate connected vehicle environment [J]. Journal of Transportation Engineering, 2014, 140(10): 04014047. DOI: https://doi.org/10.1061/(asce)te.1943-5436.0000716.

    Article  Google Scholar 

  20. FENG Yi-heng, HEAD K L, KHOSHMAGHAM S, et al. A real-time adaptive signal control in a connected vehicle environment [J]. Transportation Research Part C: Emerging Technologies, 2015, 55: 460–473. DOI: https://doi.org/10.1016/j.trc.2015.01.007.

    Article  Google Scholar 

  21. GOODALL N J, SMITH B L, PARK B. Microscopic estimation of freeway vehicle positions from the behavior of connected vehicles [J]. Journal of Intelligent Transportation Systems, 2016, 20(1): 45–54. DOI: https://doi.org/10.1080/15472450.2014.889926.

    Article  Google Scholar 

  22. LI Bai-bing. Stochastic modeling for vehicle platoons (II): Statistical characteristics [J]. Transportation Research Part B: Methodological, 2017, 95: 378–393. DOI: https://doi.org/10.1016/j.trb.2016.07.017.

    Article  Google Scholar 

  23. HE Qing, HEAD K L, DING Jun. PAMSCOD: Platoon-based arterial multi-modal signal control with online data [J]. Transportation Research Part C: Emerging Technologies, 2012, 20(1): 164–184. DOI: https://doi.org/10.1016/j.trc.2011.05.007.

    Article  Google Scholar 

  24. JIANG Yi, LI Shuo, SHAMO D E. A platoon-based traffic signal timing algorithm for major-minor intersection types [J]. Transportation Research Part B: Methodological, 2006, 40(7): 543–562. DOI: https://doi.org/10.1016/j.trb.2005.07.003.

    Article  Google Scholar 

  25. YE Qian-wen, CHEN Xu-mei, LIAO Ruo-hua, et al. Development and evaluation of a vehicle platoon guidance strategy at signalized intersections considering fuel savings [J]. Transportation Research Part D: Transport and Environment, 2019, 77: 120–131. DOI: https://doi.org/10.1016/j.trd.019.10.020.

    Article  Google Scholar 

  26. CHEN Jian-zhong, LIANG Huan, LI Jing, et al. A novel distributed cooperative approach for mixed platoon consisting of connected and automated vehicles and human-driven vehicles [J]. Physica A: Statistical Mechanics and Its Applications, 2021, 573: 125939. DOI: https://doi.org/10.1016/j.physa.2021.125939.

    Article  MathSciNet  MATH  Google Scholar 

  27. WANG Jian, GONG Si-yuan, PEETA S, et al. A real-time deployable model predictive control-based cooperative platooning approach for connected and autonomous vehicles [J]. Transportation Research Part B: Methodological, 2019, 128: 271–301. DOI: https://doi.org/10.1016/j.trb.2019.08.002.

    Article  Google Scholar 

  28. ZHOU Yang, AHN S, WANG Meng, et al. Stabilizing mixed vehicular platoons with connected automated vehicles: An H-infinity approach [J]. Transportation Research Procedia, 2019, 38: 441–461. DOI: https://doi.org/10.1016/j.trpro.2019.05.024.

    Article  Google Scholar 

  29. QIN Yan-yan, WANG Hao, RAN Bin. Control design for stable connected cruise control systems to enhance safety and traffic efficiency [J]. IET Intelligent Transport Systems, 2018, 12(8): 921–930. DOI: https://doi.org/10.1049/iet-its.2018.5271.

    Article  Google Scholar 

  30. TSUGAWA S, JESCHKE S, SHLADOVER S E. A review of truck platooning projects for energy savings [J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(1): 68–77. DOI: https://doi.org/10.1109/TIV.2016.2577499.

    Article  Google Scholar 

  31. NORUZOLIAEE M, ZOU Bo, ZHOU Yan. Truck platooning in the US national road network: A system-level modeling approach [J]. Transportation Research Part E: Logistics and Transportation Review, 2021, 145: 102200. DOI: https://doi.org/10.1016/j.tre.2020.102200.

    Article  Google Scholar 

  32. BIAN You-gang, ZHENG Yang, REN Wei, et al. Reducing time headway for platooning of connected vehicles via V2V communication [J]. Transportation Research Part C: Emerging Technologies, 2019, 102: 87–105. DOI: https://doi.org/10.1016/j.trc.2019.03.002.

    Article  Google Scholar 

  33. WU Jia-ming, AHN S, ZHOU Yang, et al. The cooperative sorting strategy for connected and automated vehicle platoons [J]. Transportation Research Part C: Emerging Technologies, 2021, 123: 102986. DOI: https://doi.org/10.1016/j.trc.2021.102986.

    Article  Google Scholar 

  34. ADAMS W F. Road traffic considered as a random series. (includes plates) [J]. Journal of the Institution of Civil Engineers, 1936, 4(1): 121–130. DOI: https://doi.org/10.1680/ijoti.1936.14802.

    Article  Google Scholar 

  35. SCHAKEL W J, VAN AREM B, NETTEN B D. Effects of Cooperative Adaptive Cruise Control on traffic flow stability [C]//13th International IEEE Conference on Intelligent Transportation Systems. September 19–22, 2010, Funchal, Portugal. IEEE, 2010: 759–764. DOI: https://doi.org/10.1109/ITSC.2010.5625133.

  36. ALTAY İ, AKSUN GÜVENÇ B, GÜVENÇ L. Lidar data analysis for time to headway determination in the DriveSafe project field tests [J]. International Journal of Vehicular Technology, 2013, 2013: 749896. DOI: https://doi.org/10.1155/2013/749896.

    Article  Google Scholar 

  37. LIORIS J, PEDARSANI R, TASCIKARAOGLU F Y, et al. Platoons of connected vehicles can double throughput in urban roads [J]. Transportation Research Part C: Emerging Technologies, 2017, 77: 292–305. DOI: https://doi.org/10.1016/j.trc.2017.01.023.

    Article  Google Scholar 

  38. ZHOU Jia-zu, ZHU Feng. Modeling the fundamental diagram of mixed human-driven and connected automated vehicles [J]. Transportation Research Part C: Emerging Technologies, 2020, 115: 102614. DOI: https://doi.org/10.1016/j.trc.2020.102614.

    Article  Google Scholar 

  39. GHIASI A, HUSSAIN O, QIAN Zhen, et al. A mixed traffic capacity analysis and lane management model for connected automated vehicles: A Markov chain method [J]. Transportation Research Part B: Methodological, 2017, 106: 266–292. DOI: https://doi.org/10.1016/j.trb.2017.09.022.

    Article  Google Scholar 

  40. ALZUHAIRI A, ALDHAHERI M, SUN Zhan-bo, et al. Vehicular emissions and concentrations in school zones: A case study [J]. Journal of Central South University, 2016, 23(7): 1778–1785. DOI: https://doi.org/10.1007/s11771-016-3231-9.

    Article  Google Scholar 

  41. MA Dong-fang, WANG Dian-hai, SUN Feng, et al. Method of spillover identification in urban street networks using loop detector outputs [J]. Journal of Central South University, 2013, 20(2): 572–578. DOI: https://doi.org/10.1007/s11771-013-1520-0.

    Article  Google Scholar 

  42. HASHMI M F, PAL R, SAXENA R, et al. A new approach for real time object detection and tracking on high resolution and multi-camera surveillance videos using GPU [J]. Journal of Central South University, 2016, 23(1): 130–144. DOI: https://doi.org/10.1007/s11771-016-3056-6.

    Article  Google Scholar 

  43. EILBERT A, JACHSON L, NOEL G, SMITH S. A framework for evaluating energy and emissions impacts of connected and automated vehicles through traffic microsimulations [C]//Transportation Research Board 97th Annual Meeting, Washington D. C., 2018.

Download references

Author information

Authors and Affiliations

Authors

Contributions

DING Shen-zhen conducted the literature review and wrote the first draft of the manuscript. DING Shen-zhen and CHEN Xu-mei analyzed the measured data and the calculated results. DING Shen-zhen, CHEN Xu-mei, and YU Lei edited the draft of the manuscript. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Xu-mei Chen  (陈旭梅).

Additional information

Conflict of interest

DING Shen-zhen, CHEN Xu-mei, and YU Lei declare that they have no conflict of interest.

Foundation item: Project(71871013) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Sz., Chen, Xm. & Yu, L. Markov chain-based platoon recognition model in mixed traffic with human-driven and connected and autonomous vehicles. J. Cent. South Univ. 29, 1521–1536 (2022). https://doi.org/10.1007/s11771-022-5023-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5023-8

Key words

关键词

Navigation