Skip to main content
Log in

Effect of Ni/Fe ratio on activation sintering and mechanical properties of molybdenum nickel iron alloy

Ni/Fe比对钼镍铁合金活化烧结及力学性能的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In order to improve the low ductility of the Mo-Ni alloy, Fe is added and the effects of Ni/Fe mass ratio on the densification behavior, microstructure evolution and mechanical properties of alloy were investigated. The experimental results show that when iron is added to 95Mo-5Ni alloy, the formation of brittle intermetallic phase δ-MoNi at the grain boundary is avoided. Meanwhile, the grain growth of Mo is also effectively inhibited in the sintering process. However, the addition of iron reduces the degree of densification of alloy since the activation effect of Ni is superior to that of Fe. From the experimental results, it could be concluded that the maximum hardness and bending strength are achieved by 95Mo-1.5Ni-3.5Fe alloy, which are HV 614 and 741 MPa, respectively. Combined with the analyses of bending fracture mechanism, the improvement relative to Mo-Ni alloy is likely attributed to the inhibition of the brittle phase.

摘要

为了改善Mo-Ni合金的低塑性,在合金中加入Fe,并研究了Ni/Fe质量比对合金致密化行为、 组织演变和力学性能的影响。结果表明,在95Mo-5Ni 合金中加入Fe,可避免晶界处脆性金属中间相 δ-MoNi 的形成,同时在烧结过程中也可以有效抑制Mo的晶粒长大。但是由于Ni 的活化效果优于Fe, Fe 的加入降低了合金的致密化程度。实验结果显示:95Mo-1.5Ni-3.5Fe 合金的硬度和抗弯强度最高, 分别为HV 614 和741 MPa。结合弯曲断裂机理分析,相对于Mo-Ni合金,性能的改善可能归因于抑制 脆性相的形成。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MADAY M F, GIORGI R, DIKONIMOS-MAKRIS T. Correlations between the electrochemical behaviour and surface film composition of TZM alloy exposed to divertor water coolant environments [J]. Journal of Nuclear Materials, 1997, 246(1): 70–76. DOI: https://doi.org/10.1016/S0022-3115(97)00020-2.

    Article  Google Scholar 

  2. DIMIDUK D M, PEREPEZKO J H. Mo-Si-B alloys: Developing a revolutionary turbine-engine material [J]. MRS Bulletin, 2003, 28(9): 639–645. DOI: https://doi.org/10.1557/mrs2003.191.

    Article  Google Scholar 

  3. EL-GENK M S, TOURNIER J M. A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems [J]. Journal of Nuclear Materials, 2005, 340(1): 93–112. DOI: https://doi.org/10.1016/j.jnucmat.2004.10.118.

    Article  Google Scholar 

  4. KASERER L, BRAUN J, STAJKOVIC J, et al. Fully dense and crack free molybdenum manufactured by Selective Laser Melting through alloying with carbon [J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 105000. DOI: https://doi.org/10.1016/j.ijrmhm.2019.105000.

    Article  Google Scholar 

  5. LIU G, ZHANG G J, JIANG F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nature Materials, 2013, 12(4): 344–350. DOI: https://doi.org/10.1038/nmat3544.

    Article  Google Scholar 

  6. GARG P, PARK S J, GERMAN R M. Effect of Die compaction pressure on densification behavior of molybdenum powders [J]. International Journal of Refractory Metals and Hard Materials, 2007, 25(1): 16–24. DOI: https://doi.org/10.1016/j.ijrmhm.2005.10.014.

    Article  Google Scholar 

  7. ZOVAS P E, GERMAN R M. Retarded grain boundary mobility in activated sintered molybdenum [J]. Metallurgical and Materials Transactions A, 1984, 15(6): 1103–1110. DOI: https://doi.org/10.1007/BF02644704.

    Article  Google Scholar 

  8. GERMAN R M, MUNIR Z A. Heterodiffusion model for the activated sintering of molybdenum [J]. Journal of the Less Common Metals, 1978, 58(1): 61–74. DOI: https://doi.org/10.1016/0022-5088(78)90071-1.

    Article  Google Scholar 

  9. GERMAN R M, RABIN B H. Enhanced sintering through second phase additions [J]. Powder Metallurgy, 1985, 28(1): 7–12. DOI: https://doi.org/10.1179/pom.1985.28.1.7.

    Article  Google Scholar 

  10. ZOVAS P E, GERMAN R M, HWANG K S, et al. Activated and liquid-phase sintering—Progress and problems [J]. JOM, 1983, 35(1): 28–33. DOI: https://doi.org/10.1007/BF03338181.

    Article  Google Scholar 

  11. HOFMANN H, GROSSKOPF M, HOFMANN-AMTENBRINK M, et al. Sintering behaviour and mechanical properties of activated sintered molybdenum [J]. Powder Metallurgy, 1986, 29(3): 201–206. DOI: https://doi.org/10.1179/pom.1986.29.3.201.

    Article  Google Scholar 

  12. LEE D D, KANG S J L, YOON D N. A direct observation of the grain shape accommodation during liquid phase sintering of Mo-Ni alloy [J]. Scripta Metallurgica et Materialia, 1990, 24(5): 927–930. DOI: https://doi.org/10.1016/0956-716X(90)90139-8.

    Article  Google Scholar 

  13. PANICHKINA V V, SKOROKHOD V V, KHRIENKO A F. Activated sintering of tungsten and molybdenum powders [J]. Soviet Powder Metallurgy and Metal Ceramics, 1967, 6(7): 558–560. DOI: https://doi.org/10.1007/BF00774073.

    Article  Google Scholar 

  14. GERMAN R M. Sintering theory and practice [M]. New York: Wiley-Interscience, 1996.

    Google Scholar 

  15. GERMAN R M, SURI P, PARK S J. Review: Liquid phase sintering [J]. Journal of Materials Science, 2009, 44(1): 1–39. DOI: https://doi.org/10.1007/s10853-008-3008-0.

    Article  Google Scholar 

  16. WADSWORTH J, NIEH T G, STEPHENS J J. Recent advances in aerospace refractory metal alloys [J]. International Materials Reviews, 1988, 33(1): 131–150. DOI: https://doi.org/10.1179/imr.1988.33.1.131.

    Article  Google Scholar 

  17. COCKERAM B V. The fracture toughness and toughening mechanism of commercially available unalloyed molybdenum and oxide dispersion strengthened molybdenum with an equiaxed, large grain structure [J]. Metallurgical and Materials Transactions A, 2009, 40(12): 2843–2860. DOI: https://doi.org/10.1007/s11661-009-9919-9.

    Article  Google Scholar 

  18. SCHNEIBEL J H, BRADY M P, KRUZIC J J, et al. On the improvement of the ductility of molybdenum by spinel (MgAl2O4) particles [J]. Zeitschrift Für Metallkunde, 2005, 96(6): 632–637. DOI: https://doi.org/10.3139/146.101081.

    Article  Google Scholar 

  19. ASKILL J. Tracer diffusion data for metals, alloys, and simple oxides [M]. New York: Plenum Press, 1970.

    Book  Google Scholar 

  20. HWANG K S, HUANG H S. Identification of the segregation layer and its effects on the activated sintering and ductility of Ni-doped molybdenum [J]. Acta Materialia, 2003, 51(13): 3915–3926. DOI: https://doi.org/10.1016/S1359-6454(03)00216-7.

    Article  Google Scholar 

  21. CHURN K S, GERMAN R M. Fracture behavior of W-Ni-Fe heavy alloys [J]. Metallurgical Transactions A, 1984, 15(2): 331–338. DOI: https://doi.org/10.1007/BF02645119.

    Article  Google Scholar 

  22. HUBER A, SIGL L S. On the sintering of molybdenum with two liquid phases [J]. Materialia, 2020, 9: 100600. DOI: https://doi.org/10.1016/j.mtla.2020.100600.

    Article  Google Scholar 

  23. HWANG K S, HUANG H S. Ductility improvement of Ni-added molybdenum compacts through the addition of Cu and Fe powders [J]. International Journal of Refractory Metals and Hard Materials, 2004, 22(4, 5): 185–191. DOI: https://doi.org/10.1016/j.ijrmhm.2004.06.003.

    Article  Google Scholar 

  24. SAKAMOTO T. Effect of Ni-Fe and Ni-Cr alloys addition on sintering of molybdenum powders [J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1997, 44(7): 689–693. DOI: https://doi.org/10.2497/jjspm.44.689.

    Article  Google Scholar 

  25. PRABHU G, KUMAR R A, NANDY T K. Effect of cyclic heat treatment on the microstructure and mechanical properties of W-Ni-Co alloys [J]. International Journal of Refractory Metals and Hard Materials, 2019, 82: 31–42. DOI: https://doi.org/10.1016/j.ijrmhm.2019.03.024.

    Article  Google Scholar 

  26. SAKAMOTO T, HONDA T, MIURA H, et al. Effect of Ni and Ni3Al additions on sintering of molybdenum powders [J]. Materials Transactions, JIM, 1997, 38(4): 326–333. DOI: https://doi.org/10.2320/matertrans1989.38.326.

    Article  Google Scholar 

  27. JOHNSON J L, GERMAN R M. Role of solid-state skeletal sintering during processing of Mo-Cu composites [J]. Metallurgical and Materials Transactions A, 2001, 32(3): 605–613. DOI: https://doi.org/10.1007/s11661-001-0077-y.

    Article  Google Scholar 

  28. JOHNSON J L, GERMAN R M. Solid-state contributions to densification during liquid-phase sintering [J]. Metallurgical and Materials Transactions B, 1996, 27(6): 901–909. DOI: https://doi.org/10.1007/s11663-996-0003-1.

    Article  Google Scholar 

  29. HWANG K S, HUANG H S. The liquid phase sintering of molybdenum with Ni and Cu additions [J]. Materials Chemistry and Physics, 2001, 67(1–3): 92–100. DOI: https://doi.org/10.1016/S0254-0584(00)00425-9.

    Article  Google Scholar 

  30. YE Lei, HAN Yong, FAN Jing-lian, et al. Fabrication of ultrafine-grain and great-performance W-Ni-Fe alloy with medium W content [J]. Journal of Alloys and Compounds, 2020, 846: 156237. DOI: https://doi.org/10.1016/j.jallcom.2020.156237.

    Article  Google Scholar 

  31. LASSNER E, SCHUBERT W. Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds [M]. New York: Kluwer Academic, 1999. DOI: 978-0-306-45053-2.

    Book  Google Scholar 

  32. WANG Da-hang, SUN Guo-dong, ZHANG Guo-hua. Preparation of ultrafine Mo powders via carbothermic pre-reduction of molybdenum oxide and deep reduction by hydrogen [J]. International Journal of Refractory Metals and Hard Materials, 2018, 75: 70–77. DOI: https://doi.org/10.1016/j.ijrmhm.2018.04.002.

    Article  Google Scholar 

  33. SUN Guo-dong, ZHANG Guo-hua, CHOU K C. An industrially feasible pathway for preparation of Mo nanopowder and its sintering behavior [J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 105039. DOI: https://doi.org/10.1016/j.ijrmhm.2019.105039.

    Article  Google Scholar 

  34. ZHANG He, LI Zhi-bo, ZHANG Guo-hua, et al. A novel method for preparing ultrafine molybdenum powder [J]. International Journal of Refractory Metals and Hard Materials, 2021, 96: 105491. DOI: https://doi.org/10.1016/j.ijrmhm.2021.105491.

    Article  Google Scholar 

  35. SWARTZENDRUBER L J, ITKIN V P, ALCOCK C B. The Fe-Ni (iron-nickel) system [J]. Journal of Phase Equilibria, 1991, 12(3): 288–312. DOI: https://doi.org/10.1007/BF02649918.

    Article  Google Scholar 

  36. BOSE A, SIMS D, GERMAN R M. Test temperature and strain rate effects on the properties of a tungsten heavy alloy [J]. Metallurgical Transactions A, 1988, 19(3): 487–494. DOI: https://doi.org/10.1007/BF02649263.

    Article  Google Scholar 

  37. FRISK K. An experimental and theoretical study of the phase equilibria in the Fe-Mo-Ni system [J]. Metallurgical Transactions A, 1992, 23(2): 639–649. DOI: https://doi.org/10.1007/BF02801181.

    Article  Google Scholar 

  38. ZHOU S H, WANG Y, JIANG C, et al. First-principles calculations and thermodynamic modeling of the Ni-Mo system [J]. Materials Science and Engineering A, 2005, 397(1, 2): 288–296. DOI: https://doi.org/10.1016/j.msea.2005.02.037.

    Article  Google Scholar 

  39. HIRAOKA Y, OGUSU T, YOSHIZAWA N. Decrease of yield strength in molybdenum by adding small amounts of Group VIII elements [J]. Journal of Alloys and Compounds, 2004, 381(1, 2): 192–196. DOI: https://doi.org/10.1016/j.jallcom.2004.03.112.

    Article  Google Scholar 

  40. HEIJLEGEN G P, RIECK G D. Diffusion in the Mo-Ni, Mo-Fe and Mo-Co slstems [J]. Acta Metallurgica, 1974, 22(10): 1269–1281. DOI: https://doi.org/10.1016/0001-6160(74)90140-0.

    Article  Google Scholar 

  41. MIL’MAN Y V, RISTIĆ M M, GRIDNEVA I V, et al. Structure and hardness of sintered Mo-Ni alloys [J]. Soviet Powder Metallurgy and Metal Ceramics, 1987, 26(2): 144–148. DOI: https://doi.org/10.1007/BF00794133.

    Article  Google Scholar 

  42. SAKAMOTO T, NISHIDA M, OKAZAKI K. Microstructure of Mo powders sintered with Ni and Ni3Al powders [J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1999, 46(12): 1221–1225. DOI: https://doi.org/10.2497/jjspm.46.1221.

    Article  Google Scholar 

  43. CHOU T C, LINK L. Solid-state interdiffusion in Ni-Mo diffusion couples at high temperatures [J]. Scripta Materialia, 1996, 34(5): 831–838. DOI: https://doi.org/10.1016/1359-6462(95)00601-X.

    Article  Google Scholar 

  44. HWANG N M, PARK Y J, KIM D Y, et al. Activated sintering of nickel-doped tungsten: Approach by grain boundary structural transition [J]. Scripta Materialia, 2000, 42(5): 421–425. DOI: https://doi.org/10.1016/S1359-6462(99)00344-9.

    Article  Google Scholar 

  45. YU Yang, REN Chao-yuan, ZHANG Wen-cong. Compressive behavior of liquid phase sintered 90 W-7Ni-3Fe heavy alloy at high temperature and low strain rate condition [J]. International Journal of Refractory Metals and Hard Materials, 2018, 76: 149–157. DOI: https://doi.org/10.1016/j.ijrmhm.2018.06.006.

    Article  Google Scholar 

  46. LI Zhi-bo, ZHANG Guo-hua, CHOU K C. Densification behavior of ultrafine W-Ni-Fe composite powders produced by a two-stage reduction process [J]. Powder Technology, 2020, 360: 430–443. DOI: https://doi.org/10.1016/j.powtec.2019.11.019.

    Article  Google Scholar 

  47. KENEL C, DAVENPORT T, LI X, et al. Kinetics of alloy formation and densification in Fe-Ni-Mo microfilaments extruded from oxide- or metal-powder inks [J]. Acta Materialia, 2020, 193: 51–60. DOI: https://doi.org/10.1016/j.actamat.2020.04.038.

    Article  Google Scholar 

  48. RAJKUMAR V B, HARI KUMAR K C. Thermodynamic modeling of the Fe-Mo system coupled with experiments and ab initio calculations [J]. Journal of Alloys and Compounds, 2014, 611: 303–312. DOI: https://doi.org/10.1016/j.jallcom.2014.05.030.

    Article  Google Scholar 

  49. SMITH J T. Diffusion mechanism for the nickel-activated sintering of molybdenum [J]. Journal of Applied Physics, 1965, 36(2): 595–598. DOI: https://doi.org/10.1063/1.1714036.

    Article  Google Scholar 

  50. HALL E O. The deformation and ageing of mild steel: III discussion of results [J]. Proceedings of the Physical Society Section B, 1951, 64(9): 747–753. DOI: https://doi.org/10.1088/0370-1301/64/9/303.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LIU Jun-ru, ZHANG Guo-hua and CHOU Kuo-chih developed the overarching research goal. LIU Jun-ru, LI Zhi-bo and CHEN Ben conducted the experiments, analyzed the test data, and wrote the initial draft of the manuscript.

Corresponding author

Correspondence to Guo-hua Zhang  (张国华).

Additional information

Conflict of interest

LIU Jun-ru, LI Zhi-bo, CHEN Ben, CHOU Kuo-chih and ZHANG Guo-hua declare that they have no conflict of interest.

Foundation item: Project(51734002) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Jr., Li, Zb., Chen, B. et al. Effect of Ni/Fe ratio on activation sintering and mechanical properties of molybdenum nickel iron alloy. J. Cent. South Univ. 29, 1423–1436 (2022). https://doi.org/10.1007/s11771-022-5014-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5014-9

Key words

关键词

Navigation