Skip to main content
Log in

Colonization of Penicillium oxalicum enhanced neutralization effects of microbial decomposition of organic matter in bauxite residue

草酸青霉强化有机质的分解实现赤泥碱中和

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Bauxite residue is a highly alkaline waste product from refining bauxite ore. Bioremediation driven by microbial activities has been evidently effective in lowering the alkalinity of bauxite residues, which is critical to the initiation of pedogenesis under engineered conditions. The present study investigated the changes of alkalinity and aggregation of bauxite residue at different depth in response to the colonization of Penicillium oxalicum in columns. The results demonstrated that the inoculation of P. oxalicum decreased the residue’s pH to about 7 after 30 d only at the surface layer, which was exposed to aerobic conditions. The formation of aggregates was improved overall in the organic matter treated bauxite residue. However, the EC of bauxite residue increased with time under the incubation condition, probably due to accelerated hydrolysis of sodium-rich minerals. The inoculation of P. oxalicum had no effects on urease activity, but increased cellulose enzyme activity at surface layer only.

摘要

赤泥是氧化铝工业生产过程中产生的强碱性固体废弃物,而生物修复是降低赤泥碱性的有效方 法。针对赤泥高碱性问题,通过土柱实验开展草酸青霉调控赤泥碱性,探究不同深度的赤泥碱性变化。 结果发现应用草酸青霉能显著降低赤泥碱性并形成稳定的团聚体结构;赤泥表层的pH 值在30 天内降 低至7 左右,而电导率则上升。草酸青霉对赤泥中的有机质和脲酶活性无明显影响,但能增加纤维素 酶的活性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. XUE Sheng-guo, ZHU Feng, KONG Xiang-feng, WU Chuan, HUANG Ling, HUANG Nan, HARTLEY W. A review of the characterization and revegetation of bauxite residues (red mud) [J]. Environmental Science and Pollution Research, 2016, 23: 1120–1132. DOI: 10.1007/s11356-015-4558–8.

    Article  Google Scholar 

  2. LI Yi-wei, JIANG Jun, XUE Sheng-guo, MILLAR G, KONG Xiang-feng, LI Xiao-fei, LI Meng, LI Chu. Effect of ammonium chloride on leaching behavior of alkaline anion and sodium ion in bauxite residue [J]. Transactions of Nonferrous Metals Society of China, 2018, 28: 2125–2134. DOI: 10.1016/S1003-6326(18)64857-5.

    Article  Google Scholar 

  3. XUE Sheng-guo, LI Meng, JIANG Jun, GRAEME J M, LI Chu-xuan, KONG Xiang. Phosphogypsum stabilization of bauxite residue: Conversion of its alkaline characteristics [J]. Journal of Environmental Sciences, 2019, 77: 1–10. DOI: 10.1016/j.jes.2018.05.016.

    Article  Google Scholar 

  4. LI Xiao-fei, YE Yu, XUE Sheng-guo, JIANG Jun, WU Chuan, KONG Xiang-feng, HARTLEY W, LI Yi-wei. Leaching optimization and dissolution behavior of alkaline anions in bauxite residue [J]. Transactions of Nonferrous Metals Society of China, 2018, 28: 1248–1255. DOI: 10.1016/S1003-6326(18)64763-6.

    Article  Google Scholar 

  5. KONG Xiang-feng, LI Meng, XUE Sheng-guo, HARTLEY W, CHEN Cheng, WU Chuan, LI Xiao-fei, LI Yi-wei. Acid transformation of bauxite residue: Conversion of its alkaline characteristics [J]. Journal of Hazardous Materials, 2017, 324: 382–390. DOI: 10.1016/j.jhazmat.2016.10.073.

    Article  Google Scholar 

  6. KONG Xiang-feng, GUO Ying, XUE Sheng-guo, HARTLEY W, WU Chuan, YE Yu, CHENG Qin. Natural evolution of alkaline characteristics in bauxite residue [J]. Journal of Cleaner Production, 2017, 143: 224–230. DOI: 10.1016/j.jclepro.2016.12.125.

    Article  Google Scholar 

  7. XUE Sheng-guo, YE Yu, ZHU Feng, WANG Qiong, JIANG Jun, W HARTLEY. Changes in distribution and microstructure of bauxite residue aggregates following amendments addition [J]. Journal of Environmental Sciences. 2019, 78: 276–286. DOI: 10.1016/j.jes.2018.10.010.

    Google Scholar 

  8. XUE Sheng-guo, WU Yu, LI Yi-wei, KONG Xiang-feng, ZHU Feng, HARTLEY W, LI Xiao-bin. Industrial wastes applications for alkalinity regulation in bauxite residue: A comprehensive review [J]. Journal of Central South University, 2019, 26(2): 268–288.

    Article  Google Scholar 

  9. ZHU Feng, HOU Jing, XUE Sheng-guo, WU Chuan, WANG Qiong, HARTLEY W. Vermicompost and gypsum amendments improve aggregate formation in bauxite residue [J]. Land Degradation and Development. 2017, 28: 2109–2120. DOI: 10.1002/ldr.2737.

    Google Scholar 

  10. LIAO Jia-xin, JIANG Jun, XUE Sheng-guo, CHENG Qing, WU Hao, MANIKANDAN R, HARTLEY W, HUANG Long. A novel acid-producing fungus isolated from bauxite residue: The potential to reduce the alkalinity [J]. Geomicrobiology Journal, 2018, 35: 840–847. DOI: 10.1080/01490451.2018.1479807.

    Article  Google Scholar 

  11. SANTINI T C, KERR J L, WARREN L A. Microbiallydriven strategies for bioremediation of bauxite residue [J]. Journal of Hazardous Materials, 2015, 293: 131–157. DOI: 10.1016/j.jhazmat.2015.03.024.

    Article  Google Scholar 

  12. SAUER M, PORRO D, MATTANOVICH D, BRANDUARDI P. Microbial production of organic acids: Expanding the markets [J]. Trends in Biotechnology, 2008, 26: 100–108. DOI: 10.1016/j.tibtech.2007.11.006.

    Article  Google Scholar 

  13. SCHIPPERS A, SAND W. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur [J]. Applied & Environmental Microbiology, 1999, 65: 319–321. DOI: 10.1002/abio. 370190413

    Google Scholar 

  14. POWER G, GRAFE M, KLAUBER C. Bauxite residue issues: I. Current management, disposal and storage practices [J]. Hydrometallurgy, 2011, 108: 33–45. DOI: 10.1016/j.hydromet.2011.02.006.

    Google Scholar 

  15. TISDALL J M, OADES J M. Organic matter and water stable aggregates in soils [J]. European Journal of Soil Science, 2010, 33: 141–163. DOI: 10.1111/j.1365-2389.1982. tb01755.x.

    Article  Google Scholar 

  16. ZHU Feng, XUE Sheng-guo, W HARTLEY, HUANG Ling, WU Chuan, LI Xiao-bin. Novel predictors of soil genesis following natural weathering processes of bauxite residues [J]. Environmental Science and Pollution Research, 2016, 23: 2856–2863. DOI: 10.1007/s11356-015-5537-9.

    Article  Google Scholar 

  17. JIANG Yu, SUN Bo, JIN Chen, WANG Feng. Soil aggregate stratification of nematodes and microbial communities affects the metabolic quotient in an acid soil [J]. Soil Biology & Biochemistry, 2013, 60: 1–9. DOI: 10.1016/j.soilbio.2013.01.006.

    Article  Google Scholar 

  18. KABIR Z, KOIDE R T. The effect of dandelion or a cover crop on mycorrhiza inoculum potential, soil aggregation and yield of maize [J]. Agriculture Ecosystems & Environment, 2000, 78: 167–174. DOI: 10.1016/s0167-8809(99)00121-8.

    Article  Google Scholar 

  19. TIAN Da, WANG Wen, SU Mu, ZHENG Jun, WU Yuan, WANG Shi, LI Zhen, HU Shui. Remediation of lead-contaminated water by geological fluorapatite and fungus Penicillium oxalicum [J]. Environmental Science and Pollution Research, 2018, 25: 21118–21126. DOI: 10.1007/s11356-018-2243-4.

    Article  Google Scholar 

  20. SANTINI T C, FEY M V. Assessment of Technosol formation and in situ remediation in capped alkaline tailings [J]. Catena, 2016, 136: 17–29. DOI: 10.1016/j.catena.2015. 08.006.

    Article  Google Scholar 

  21. ZANUZZI A, AROCENA J M, MOURIK J M V, CANO A F. Amendments with organic and industrial wastes stimulate soil formation in mine tailings as revealed by micromorphology [J]. Geoderma, 2009, 154: 69–75. DOI: 10.1016/j.geoderma.2009.09.014.

    Article  Google Scholar 

  22. CHANG E H, CHUANG R S, TSAI Y H. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population [J]. Soil Science & Plant Nutrition, 2010, 53: 132–140. DOI: 10.1111/j.1747-0765.2007.00122.x.

    Article  Google Scholar 

  23. MAKI M, LEUNG K T, QIN W. The prospects of cellulaseproducing bacteria for the bioconversion of lignocellulosic biomass [J]. International Journal of Biological Sciences, 2009, 5: 500–516. DOI: 10.1007/BF00373654.

    Article  Google Scholar 

  24. BARANCIKOVA G, JERZYKIEWICZ M, GOMORYOVA E, TOBIASOVA E, LITAVEC T. Changes in forest soil organic matter quality affected by windstorm and wildfire [J]. Journal of Soils & Sediments, 2018, 18: 2748–2748. DOI: 10.1007/s11368-018-1979-2.

    Article  Google Scholar 

  25. TABATABAI M A, BREMNER J M. Assay of urease activity in soils [J]. Soil Biology & Biochemistry, 1972, 4: 479–487. DOI: 10.1016/0038-0717(72)90064-8.

    Article  Google Scholar 

  26. KONG Xiang-feng, JIANG Xing-xing, XUE Sheng-guo, HUANG Ling, HARTLEY W, WU Chuan, LI Xiao-bin. Migration and distribution of salinity in bauxite residue during water leaching [J]. Transactions of Nonferrous Metals Society of China, 2018, 28: 534–541. DOI: 10.1016/S1003-6326(18)64686-2.

    Article  Google Scholar 

  27. ZHU Feng, LIAO Jia-xin, XUE Sheng-guo, HARTLEY W, ZHOU Qi, WU Hao. Evaluation of aggregate microstructures following natural regeneration in bauxite residue as characterized by synchrotron-based X-ray micro-computed tomography [J]. Science of the Total Environment, 2016, 573: 155–163. DOI: 10.1016/j.scitotenv.2016.08.108.

    Article  Google Scholar 

  28. KRISHNA P, REDDY M S, PATNAIK S K. Aspergillus Tubingensis reduces the pH of the bauxite residue (red mud) amended soils [J]. Water Air and Soil Pollution, 2005, 167: 201–209. DOI: 10.1007/s11270-005-0242-9.

    Article  Google Scholar 

  29. VALARIE E. The bioremediation of bauxite residue (red mud) using indigenous bacteria [D]. Perth: Murdoch University, 1999.

    Google Scholar 

  30. HAMDY M K, WILLIAMS F S. Bacterial amelioration of bauxite residue waste of industrial alumina plants [J]. Journal of Industrial Microbiology & Biotechnology, 2001, 27: 228–233. DOI: 10.1038/sj.jim.7000181.

    Article  Google Scholar 

  31. REN Jie, LIU Ji, CHEN Juan, LIU Xiao, LI Fa-sheng, DU Ping. Effect of ferrous sulfate and nitrohumic acid neutralization on the leaching of metals from a combined bauxite residue [J]. Environmental Science and Pollution Research, 2018, 24: 1–12. DOI: 10.1007/s11356-017–8605-5.

    Google Scholar 

  32. GRAFE M, KLAUBER C. Bauxite residue issues: IV. Old obstacles and new pathways for in situ residue bioremediation [J]. Hydrometallurgy, 2011, 108: 46–59. DOI: 10.1016/j.hydromet.2011.02.005.

    Google Scholar 

  33. SCHNURER J, CLARHOLM M, BOSTROM S, ROSSWALL T. Effects of moisture on soil microorganisms and nematodes: A field experiment [J]. Microbial Ecology, 1986, 12: 217–230. DOI: 10.1007/BF02011206.

    Article  Google Scholar 

  34. SANTINI T C, MALCOLM L I, TYSON G W, WARREN L A. pH and organic carbon dose rates control microbially driven bioremediation efficacy in alkaline bauxite residue [J]. Environmental Science & Technology, 2016, 50: 11164–11173. DOI: 10.1021/acs.est.6b01973.

    Article  Google Scholar 

  35. DAS S, GANGULY D, MUKHERJEE A, CHAKRABORTY S, DE T K. Soil urease activity of sundarban mangrove ecosystem, India [J]. Advances in Microbiology, 2017, 7: 617–632. DOI: 10.4236/aim.2017.78048.

    Article  Google Scholar 

  36. JONES B E H, HAYNES R J, PHILLIPS I R. Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties [J]. Journal of Environmental Management, 2010, 91: 2281–2288. DOI: 10.1016/j.jenvman.2010.06.013.

    Article  Google Scholar 

  37. COURTNEY R, HARRINGTON T, BYRNE K A. Indicators of soil formation in restored bauxite residues [J]. Ecological Engineering, 2013, 58: 63–68. DOI: 10.1016/j.ecoleng.2013. 06.022.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Shanghai Synchrotron Radiation Facility for use of the synchrotron facilities at beamlines BL08U. The authors sincerely acknowledge HUANG Long-bin and WANG Yan-hong to further improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-guo Xue  (薛生国).

Additional information

Foundation item: Projects(41877511, 41842020) supported by the National Natural Science Foundation of China; Project(2018zzts421) supported by the Innovative Project of Independent Exploration of Central South University, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Jx., Zhang, Yf., Cheng, Qy. et al. Colonization of Penicillium oxalicum enhanced neutralization effects of microbial decomposition of organic matter in bauxite residue. J. Cent. South Univ. 26, 331–342 (2019). https://doi.org/10.1007/s11771-019-4005-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4005-y

Key words

关键词

Navigation