Skip to main content
Log in

Removal of astrazon golden yellow 7GL from colored wastewater using chemically modified clay

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Chemically modified clay (CMC) was used as an adsorbent for the removal of Astrazon Golden Yellow 7GL (AGY-7GL), which is a basic dye from wastewater. For this purpose, the chemically modified clay was first characterized by determining zero point of charge (pHzpc), and using BET, SEM and FTIR. Then effects of operational parameters on adsorption of AGY-7GL were studied in a batch system. The effect of various parameters such as contact time (0−180 min), pH (2−8), temperature (293−323 K), CMC concentration (0.075−0.5 mg/L) and initial AGY-7GL concentration (75−250 mg/L) were investigated on the adsorption efficiency and capacity adsorption of CMC for the removal of AGY-7GL. Thermodynamic and kinetic parameters were calculated from the results of the adsorption experiment. The evaluation of kinetic models shows that this data best fits the pseudo-second-order model. It is determined that the adsorption equilibrium data works very well with the nonlinear Freundlich isotherm model. Thermodynamic parameters such as ΔH 0 (19.0 kJ/mol), ΔG 0 (−28.8 kJ/mol) and ΔS 0 (0.148 kJ/mol) were also determined. According to the experimental results, it is concluded that CMC could be used as an alternative low cost potential adsorbent for the removal of AGY-7GL from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. GONG R M, LI M, YANG C, SUN Y Z, CHEN J. Removal of cationic dyes from aqueous solution by adsorption on peanut hull [J]. Journal of Hazardous Materials, 2005, 121(1–3): 247–250.

    Article  Google Scholar 

  2. CHHABRA M, MISHRA S, SREEKRISHNAN T R. Combination of chemical and enzymatic treatment for efficient decolorization/ degradation of textile effluent: High operational stability of the continuous process [J]. Biochemical Engineering Journal, 2015, 93: 17–24.

    Article  Google Scholar 

  3. DIZGE N, AYDINER C, DEMIRBAS E, KOBYA M, KARA S. Adsorption of reactive dyes from aqueous solutions by fly ash: Kinetic and equilibrium studies [J]. Journal of Hazardous Materials, 2008, 150(3): 737–746.

    Article  Google Scholar 

  4. LEE J W, CHOI S P, THIRUVENKATACHARI R, SHIM W G, MOON H. Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes [J]. Dyes and Pigments, 2006, 69(3): 196–203.

    Article  Google Scholar 

  5. AKSAKAL O, UCUN H. Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (Reactive Red 195) onto Pinus sylvestris L [J]. Journal of Hazardous Materials, 2010, 181(1–3): 666–672.

    Article  Google Scholar 

  6. GONZALEZ J A, VILLANUEVA M E, PIEHL L L, COPELLO G J. Development of a chitin/graphene oxide hybrid composite for the removal of pollutant dyes: Adsorption and desorption study [J]. Chemical Engineering Journal, 2015, 280: 41–48.

    Article  Google Scholar 

  7. ANNADURAI G, LING L Y, LEE J F. Adsorption of reactive dye from an aqueous solution by chitosan: Isotherm, kinetic and thermodynamic analysis [J]. Journal of Hazardous Materials, 2008, 152(1): 337–346.

    Article  Google Scholar 

  8. AMIN N K. Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics [J]. Journal of Hazardous Materials, 2009, 165(1–3): 52–62.

    Article  Google Scholar 

  9. TURGAY O, ERSOZ G, ATALAY S, FORSS J, WELANDER U. The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation [J]. Separation and Purification Technology, 2011, 79(1): 26–33.

    Article  Google Scholar 

  10. KIM T H, PARK C, KIM S. Water recycling from desalination and purification process of reactive dye manufacturing industry by combined membrane filtration [J]. Journal of Cleaner Production, 2005, 13(8): 779–786.

    Article  Google Scholar 

  11. MOGHADDAM S S, MOGHADDAM M R A, ARAMI M. Coagulation/flocculation process for dye removal using sludge from water treatment plant: Optimization through response surface methodology [J]. Journal of Hazardous Materials, 2010, 175(1–3): 651–657.

    Article  Google Scholar 

  12. NATARAJ S K, HOSAMANI K M, AMINABHAVI T M. Nanofiltration and reverse osmosis thin film composite membrane module for the removal of dye and salts from the simulated mixtures [J]. Desalination, 2009, 249(1): 12–17.

    Article  Google Scholar 

  13. DULMAN V, CUCU-MAN S M. Sorption of some textile dyes by beech wood sawdust [J]. Journal of Hazardous Materials, 2009, 162(2–3): 1457–1464.

    Article  Google Scholar 

  14. MAHMOODI N M, SALEHI R, ARAMI M, BAHRAMI H. Dye removal from colored textile wastewater using chitosan in binary systems [J]. Desalination, 2011, 267(1): 64–72.

    Article  Google Scholar 

  15. AHMED S A S, KHALIL L B, EL-NABARAWY T. Removal of reactive blue 19 dye from aqueous solution using natural and modified orange peel [J]. Carbon Letters, 2012, 13(4): 212–220.

    Article  Google Scholar 

  16. SELEN V, OZER D, OZER A. A study on the removal of Cr(VI) ions by sesame (sesamum indicum) stems dehydrated with sulfuric acid [J]. Arabian Journal for Science and Engineering, 2014, 39(8): 5895–5904.

    Article  Google Scholar 

  17. CICEK F, OZER D, OZER A, OZER A. Low cost removal of reactive dyes using wheat bran [J]. Journal of Hazardous Materials, 2007, 146(1, 2): 408–416.

    Article  Google Scholar 

  18. ZHANG Z Y, ZHANG Z B, FERNANDEZ Y, MENENDEZ J A, NIU H, PENG J H, ZHANG L B, GUO S H. Adsorption isotherms and kinetics of methylene blue on a low-cost adsorbent recovered from a spent catalyst of vinyl acetate synthesis [J]. Applied Surface Science, 2010, 256(8): 2569–2576.

    Article  Google Scholar 

  19. AKSU Z, ISOGLU I A. Us of agricultural waste sugar beet pulp for the removal of Gemazol turquoise blue-G reactive dye from aqueous solution [J]. Journal of Hazardous Materials, 2006, 137(1): 418–430.

    Article  Google Scholar 

  20. SILVA J P, SOUSA S, RODRIGUES J, ANTUNES H, PORTER J J, GONCALVES I, FERREIRA-DIAS S. Adsorption of acid orange 7 dye in aqueous solutions by spent brewery grains [J]. Separation and Purification Technology, 2004, 40(3): 309–315.

    Article  Google Scholar 

  21. WANG S B, BOYJOO Y, CHOUEIB A, ZHU Z H. Removal of dyes from aqueous solution using fly ash and red mud [J]. Water Research, 2005, 39(1): 129–138.

    Article  Google Scholar 

  22. SANTHY K, SELVAPATHY P. Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon [J]. Bioresource Technology, 2006, 97(11): 1329–1336.

    Article  Google Scholar 

  23. OZER A, AKKAYA G, TURABIK M. Biosorption of Acid Blue 290 (AB 290) and Acid Blue 324 (AB 324) dyes on Spirogyra rhizopus [J]. Journal of Hazardous Materials, 2006, 135(1–3): 355–364.

    Article  Google Scholar 

  24. KARAGOZ S, TAY T, UCAR S, ERDEM M. Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption [J]. Bioresource Technology, 2008, 99(14): 6214–6222.

    Article  Google Scholar 

  25. MADEJOVA J, KOMADEL P. Baseline studies of the clay minerals society source clays: Infrared methods [J]. Clays and Clay Minerals, 2001, 49(5): 410–432.

    Article  Google Scholar 

  26. LIU H M, YUAN P, QIN Z H, LIU D, TAN D Y, ZHU J X, HE H P. Thermal degradation of organic matter in the interlayer clay-organic complex: A TG-FTIR study on a montmorillonite/12-aminolauric acid system [J]. Applied Clay Science, 2013, 80–81: 398–406.

    Article  Google Scholar 

  27. DANISH M, HASHIM R, IBRAHIM M N M, SULAIMAN O. Characterization of physically activated acacia mangium wood-based carbon for the removal of methyl orange dye [J]. Bioresources, 2013, 8(3): 4323–4339.

    Article  Google Scholar 

  28. LOPEZ-RAMON M V, STOECKLI F, MORENO-CASTILLA C, CARRASCO-MARIN F. On the characterization of acidic and basic surface sites on carbons by various techniques [J]. Carbon, 1999, 37(8): 1215–1221.

    Article  Google Scholar 

  29. JIA Y F, XIAO B, THOMAS K M. Adsorption of metal ions on nitrogen surface functional groups in activated carbons [J]. Langmuir, 2002, 18(2): 470–478.

    Article  Google Scholar 

  30. YAO Y J, HE B, XU F F, CHEN X F. Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes [J]. Chemical Engineering Journal, 2011, 170(1): 82–89.

    Article  Google Scholar 

  31. WANG P F, CAO M H, WANG C, AO Y H, HOU J, QIAN J. Kinetics and thermodynamics of adsorption of methylene blue by a magnetic graphene-carbon nanotube composite [J]. Applied Surface Science, 2014, 290: 116–124.

    Article  Google Scholar 

  32. VIJAYARAGHAVAN K, YUN Y S. Bacterial biosorbents and biosorption [J]. Biotechnology Advances, 2008, 26(3): 266–291.

    Article  Google Scholar 

  33. AKSU Z, TEZER S. Equilibrium and kinetic modelling of biosorption of Remazol Black B by Rhizopus arrhizus in a batch system: Effect of temperature [J]. Process Biochemistry, 2000, 36(5): 431–439.

    Article  Google Scholar 

  34. OZER D, DURSUN G, OZER A. Methylene blue adsorption from aqueous solution by dehydrated peanut hull [J]. Journal of Hazardous Materials, 2007, 144(1, 2): 171–179.

    Article  Google Scholar 

  35. FRANCA A S, OLIVEIRA L S, FERREIRA M E. Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds [J]. Desalination, 2009, 249(1): 267–272.

    Article  Google Scholar 

  36. ALKAN M, CELIKCAPA S, DEMIRBAS O, DOGAN M. Removal of reactive blue 221 and acid blue 62 anionic dyes from aqueous solutions by sepiolite [J]. Dyes and Pigments, 2005, 65(3): 251–259.

    Article  Google Scholar 

  37. NASUHA N, HAMEED B H, DIN A T M. Rejected tea as a potential low-cost adsorbent for the removal of methylene blue [J]. Journal of Hazardous Materials, 2010, 175(1–3): 126–132.

    Article  Google Scholar 

  38. PANDAY K K, PRASAD G, SINGH V N. Copper(II) removal from aqueous-solutions by fly-ash [J]. Water Research, 1985, 19(7): 869–873.

    Article  Google Scholar 

  39. HO Y S, MCKAY G. Pseudo-second order model for sorption processes [J]. Process Biochemistry, 1999, 34(5): 451–465.

    Article  Google Scholar 

  40. GIL A, ASSIS F C C, ALBENIZ S, KORILI S A. Removal of dyes from wastewaters by adsorption on pillared clays [J]. Chemical Engineering Journal, 2011, 168(3): 1032–1040.

    Article  Google Scholar 

  41. WAHAB M A, JELLALI S, JEDIDI N. Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling [J]. Bioresource Technology, 2010, 101(14): 5070–5075.

    Article  Google Scholar 

  42. GAO J F, ZHANG Q, SU K, CHEN R N, PENG Y Z. Biosorption of acid yellow 17 from aqueous solution by non-living aerobic granular sludge [J]. Journal of Hazardous Materials, 2010, 174(1–3): 215–225.

    Article  Google Scholar 

  43. LIU Y, LIU Y. Biosorption isotherms, kinetics and thermodynamics [J]. Separation and Purification Technology, 2008, 61(3): 229–242.

    Article  Google Scholar 

  44. ALVER E, METIN A U. Anionic dye removal from aqueous solutions using modified zeolite: Adsorption kinetics and isotherm studies [J]. Chemical Engineering Journal, 2012, 200: 59–67.

    Article  Google Scholar 

  45. PANNEERSELVAM P, MORAD N, TAN K A. Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution [J]. Journal of Hazardous Materials, 2011, 186(1): 160–168.

    Article  Google Scholar 

  46. AL-DEGS Y S, EL-BARGHOUTHI M I, EL-SHEIKH A H, WALKER G M. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon [J]. Dyes and Pigments, 2008, 77(1): 16–23.

    Article  Google Scholar 

  47. GURSES A, DOGAR C, YALCIN M, ACIKYILDIZ M, BAYRAK R, KARACA S. The adsorption kinetics of the cationic dye, methylene blue, onto clay [J]. Journal of Hazardous Materials, 2006, 131(1–3): 217–228.

    Article  Google Scholar 

  48. KARAGOZOGLU B, TASDEMIR M, DEMIRBAS E, KOBYA M. The adsorption of basic dye (Astrazon Blue FGRL) from aqueous solutions onto sepiolite, fly ash and apricot shell activated carbon: Kinetic and equilibrium studies [J]. Journal of Hazardous Materials, 2007, 147(1, 2): 297–306.

    Article  Google Scholar 

  49. TURABIK M. Adsorption of basic dyes from single and binary component systems onto bentonite: Simultaneous analysis of Basic Red 46 and Basic Yellow 28 by first order derivative spectrophotometric analysis method [J]. Journal of Hazardous Materials, 2008, 158(1): 52–64.

    Article  Google Scholar 

  50. TAHIR S S, RAUF N. Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay [J]. Chemosphere, 2006, 63(11): 1842–1848.

    Article  Google Scholar 

  51. OZCAN A, OMEROGLU C, ERDOGAN Y, OZCAN A S. Modification of bentonite with a cationic surfactant: An adsorption study of textile dye Reactive Blue 19 [J]. Journal of Hazardous Materials, 2007, 140(1, 2): 173–179.

    Article  Google Scholar 

  52. VIMONSES V, LEI S M, JIN B, CHOWD C W K, SAINT C. Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials [J]. Chemical Engineering Journal, 2009, 148(2, 3): 354–364.

    Article  Google Scholar 

  53. ALMEIDA C A P, DEBACHER N A, DOWNS A J, COTTET L, MELLO C A D. Removal of methylene blue from colored effluents by adsorption on montmorillonite clay [J]. Journal of Colloid and Interface Science, 2009, 332(1): 46–53.

    Article  Google Scholar 

  54. PUNJONGHARN P, MEEVASANA K, PAVASANT P. Influence of particle size and salinity on adsorption of basic dyes by agricultural waste: Dried Seagrape (Caulerpa lentillifera) [J]. Journal of Environmental Sciences-China, 2008, 20(6): 760–768.

    Article  Google Scholar 

  55. SULAK M T, DEMIRBAS E, KOBYA M. Removal of Astrazon Yellow 7GL from aqueous solutions by adsorption onto wheat bran [J]. Bioresource Technology, 2007, 98(13): 2590–2598.

    Article  Google Scholar 

  56. DEMIRBAS E, KOBYA M, SULAK M T. Adsorption kinetics of a basic dye from aqueous solutions onto apricot stone activated carbon [J]. Bioresource Technology, 2008, 99(13): 5368–5373.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veyis Selen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çakmak, M., Taşar, Ş., Selen, V. et al. Removal of astrazon golden yellow 7GL from colored wastewater using chemically modified clay. J. Cent. South Univ. 24, 743–753 (2017). https://doi.org/10.1007/s11771-017-3476-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-017-3476-y

Key words

Navigation