Skip to main content
Log in

Random noise suppression for seismic data using a non-local Bayes algorithm

  • Published:
Applied Geophysics Aims and scope Submit manuscript

Abstract

For random noise suppression of seismic data, we present a non-local Bayes (NLBayes) filtering algorithm. The NL-Bayes algorithm uses the Gaussian model instead of the weighted average of all similar patches in the NL-means algorithm to reduce the fuzzy of structural details, thereby improving the denoising performance. In the denoising process of seismic data, the size and the number of patches in the Gaussian model are adaptively calculated according to the standard deviation of noise. The NL-Bayes algorithm requires two iterations to complete seismic data denoising, but the second iteration makes use of denoised seismic data from the first iteration to calculate the better mean and covariance of the patch Gaussian model for improving the similarity of patches and achieving the purpose of denoising. Tests with synthetic and real data sets demonstrate that the NL-Bayes algorithm can effectively improve the SNR and preserve the fidelity of seismic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bayes, T., Price, R., and Canton, J., 1763, An essay towards solving a problem in the doctrine of chances: C. Davis, Printer to the Royal Society of London.

    Google Scholar 

  • Bonar, D., and Sacchi, M., 2012, Denoising seismic data using the nonlocal means algorithm: Geophysics, 77(1), A5–A8.

    Google Scholar 

  • Buades, A., Coll, B., and Morel, J. M., 2005, A review of image denoising algorithms, with a new one: SIAM Journal on Multiscale Modeling and Simulation, 4(2), 490–530.

    Google Scholar 

  • Buades, A., Coll, B., and Morel, J. M., 2010, Image denoising algorithms: A new nonlocal principle: SIAM Review, 52(1), 113–147.

    Google Scholar 

  • Chang, D. K., Wang, Y. H., and Zhang, G. Z., 2015, Seismic Data Denoising Based on Sparse and Redundant Representation: 85th Annual International Meeting, SEG, Expanded Abstracts, 4693–4697.

    Google Scholar 

  • Elad, M., and Aharon, M., 2006, Image denoising via sparse and redundant representations over learned dictionaries: IEEE Transactions on Image Processing, 15(12), 3736–3745.

    Google Scholar 

  • Górszczyk, A., Adamczyk, A., and Malinowski, M., 2014, Application of curvelet denoising to 2D and 3D seismic data—Practical considerations: Journal of Applied Geophysics, 105, 78–94.

    Google Scholar 

  • Kustowski, B., Cole, J., Martin, H., and Hennenfent, G., 2013, Curvelet noise attenuation with adaptive adjustment for spatio-temporally varying noise: 83th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts 2013, 4299–4303.

    Google Scholar 

  • Lebrun, M., Buades, A., and Morel, J. M., 2013, A nonlocal Bayesian image denoising algorithm: SIAM Journal on Imaging Sciences, 6(3), 1665–1688.

    Google Scholar 

  • Neelamani, R., Baumstein, A. I., Gillard, D. G., Hadidi, M. T., and Soroka, W. L., 2008, Coherent and random noise attenuation using the curvelet transform: The Leading Edge, 27(2), 240–248.

    Google Scholar 

  • Shang, S., Han, L. G., Lv, Q. T., and Tan, C. Q., 2013, Seismic random noise suppression using an adaptive nonlocal means algorithm: Applied Geophysics, 10(1), 33–40.

    Google Scholar 

  • Tang, G., Ma, J. W., and Yang, H. Z., 2012, Seismic data denoising based on learning-type overcomplete dictionaries: Applied Geophysics, 9(1), 27–32.

    Google Scholar 

  • Yilmaz, Ö., 2001, Seismic data analysis: Processing, Inversion, and Interpretation of seismic data: Society of Exploration Geophysicists, 658–709.

    Book  Google Scholar 

  • Yuan, S. Y., and Wang, S. X., 2013, Edge-preserving noise reduction based on Bayesian inversion with directional difference constraints: Journal of Geophysics and Engineering, 10(2), 025001.

    Google Scholar 

  • Yuan, S. Y., Wang, S. X., and Li, G., 2011, Random noise reduction using Bayesian inversion: Journal of Geophysics and Engineering, 9(1), 60–68.

    Google Scholar 

  • Zhang, G. Z., Chang, D. K., Wang, Y. H., Li, Z. Z., Zhao, Y., and Yin, X. Y., 2015, 3D seismic random noise suppression with sparse and redundant representation: Oil Geophysical Prospecting, 50(4), 600–606.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank anonymous reviewers for their constructive comments on this paper and the board editor’s help and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Kuan Chang.

Additional information

This work is financially sponsored by Research Institute of Petroleum Exploration & Development (PETROCHINA) Scientific Research And Technology Development Projects (No. 2016ycq02), China National Petroleum Corporation Science & Technology Development Projects (No. 2015B-3712) and Ministry of National Science & Technique (No. 2016ZX05007-006).

Chang De-Kuan works as an engineer in Research Institute of Petroleum Exploration & Development-Northwest, PetroChina. He received his Bachelor's degree from China University of Petroleum (East China) (2012), Master's degree from China University of Petroleum (East China) (2015). He has worked on seismic data processing and reservoir fractures prediction. His general interests lie in deep learning and computer vision and their application to seismic exploration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, DK., Yang, WY., Wang, YH. et al. Random noise suppression for seismic data using a non-local Bayes algorithm. Appl. Geophys. 15, 91–98 (2018). https://doi.org/10.1007/s11770-018-0657-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11770-018-0657-x

Keywords

Navigation