Skip to main content
Log in

MHD stagnation point flow of nanofluid with SWCNT and MWCNT over a stretching surface driven by Arrhenius kinetics

  • Published:
Applied Mathematics-A Journal of Chinese Universities Aims and scope Submit manuscript

Abstract

The intention of the current research is to address the conclusion of non-isothermal heterogeneous reaction on the stagnation — point flow of SWCNT — engine oil and MWCNT — engine oil nanofluid over a shrinking/stretching sheet. Further, exemplify the aspect of heat and mass transfer the upshot of magnetohydrodynamics (MHD), thermal radiation, and heat generation/absorption coefficient are exemplified. The bvp4c from Matlab is pledged to acquire the numerical explanation of the problem that contains nonlinear system of ordinary differential equations (ODE). The impacts of miscellaneous important parameters on axial velocity, temperature field, concentration profile, skin friction coefficient, and local Nusselt number, are deliberated through graphical and numerically erected tabulated values. The solid volume fraction diminishes the velocity distribution while enhancing the temperature distribution. Further, the rate of shear stress declines with increasing the magnetic and stretching parameter for both SWCNT and MWCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J H Merkin. A model for isothermal homogeneous-heterogeneous reactions in boundary-layer flow. Math Comput Model, 1996, 24(8): 125–136.

    Article  MathSciNet  Google Scholar 

  2. M A Chaudhary, and J H Merkin. A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow. I Equal diffusivities. Fluid Dyn Res, 1995, 16(6): 311.

    Article  MathSciNet  Google Scholar 

  3. A Mahdy. Aspects of homogeneous-heterogeneous reactions on natural convection flow of micropolar fluid past a permeable cone, Appl Math Comput, 2019, 352: 59–67.

    MathSciNet  MATH  Google Scholar 

  4. H Xu. Homogeneous—Heterogeneous Reactions of Blasius Flow in a Nanofluid. J Heat Transfer, 2019, 141(2): 024501.

    Article  Google Scholar 

  5. S Nadeem, N Ullah, A U Khan, T Akbar. Effect of homogeneous-heterogeneous reactions on ferrofluid in the presence of magnetic dipole along a stretching cylinder, Results Phys, 2017, 7: 3574–3582.

    Article  Google Scholar 

  6. S Nadeem, S Ahmad, N Muhammad, M T Mustafa. Chemically reactive species in the flow of a Maxwell fluid, Results Phys, 2017, 7: 2607–2613.

    Article  Google Scholar 

  7. M Khan, L Ahmad, M Ayaz. Numerical simulation of unsteady 3D magneto-Sisko fluid flow with nonlinear thermal radiation and homogeneous—heterogeneous chemical reactions. Pramana, 2018, 91(1): 13.

    Article  Google Scholar 

  8. M Ramzan, S Ahmad, D Lu. Numerical simulation for homogeneous-heterogeneous reactions and Newtonian heating in the silver-water nanofluid flow past a nonlinear stretched cylinder. Phys Scr, 2019, 94(8): 085702.

    Article  Google Scholar 

  9. M M Bhatti, R Ellahi, A Zeeshan, M Marin, N Ijaz. Numerical study of heat transfer and Hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties. Mod Phys Lett B, 2019, 33(35): 1950439.

    Article  MathSciNet  Google Scholar 

  10. S U S Choi, J A Eastman. Enhancing thermal conductivity of fluids with nanoparticles, No. ANL/MSD/CP-84938; CONF-951135–29. Argonne National Lab, IL (United States), 1995.

    Google Scholar 

  11. S Nadeem, S Ahmad, and N Muhammad. Computational study of Falkner-Skan problem for a static and moving wedge, Sens Actuators B: Chem, 2018, 263: 69–76.

    Article  Google Scholar 

  12. W A Khan, and I Pop. Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Tran, 2010, 53(11–12): 2477–2483.

    Article  Google Scholar 

  13. S Z Heris, M N Esfahany, and S Gh Etemad. Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. Int J Heat Fluid Fl, 2007, 28(2): 203–210.

    Article  Google Scholar 

  14. Q Li, Y Xuan. Convective heat transfer and flow characteristics of Cu-water nanofluid. Sci China Ser E: Technol Sci, 2002, 45(4): 408–416.

    Article  Google Scholar 

  15. S Nadeem, T Hayat, A U Khan. Numerical study on 3D rotating hybrid SWCNT-MWCNT flow over a convectively heated stretching surface with heat generation/absorption. Phys Scr, 2019, 94(7): 075202.

    Article  Google Scholar 

  16. A Sarlak, A Ahmadpour, M R Hajmohammadi. Thermal design improvement of a double-layered microchannel heat sink by using multi-walled carbon nanotube (MWCNT) nanofluids with non-Newtonian viscosity, Appl Therm Eng, 2019, 147: 205–215.

    Article  Google Scholar 

  17. A Hussanan, I Khan, M R Gorji, W A Khan. CNT S-Water—Based Nanofluid Over a Stretching Sheet, BioNanoScience 2019, 9(1): 21–29.

    Article  Google Scholar 

  18. N Muhammad, and S Nadeem. Ferrite nanoparticles NiZnFe2O4: MnZnFe2O4and Fe2O4in the flow of ferromagnetic nanofluid. Eur Phys J Plus, 2017, 132(9): 377.

    Article  Google Scholar 

  19. L Zhang, M B Arain, M M Bhatti, A Zeeshan, H Hal-Sulami. Effects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids. Appl Math Mech-Engl, 2020, 41(4): 637–654.

    Article  MathSciNet  Google Scholar 

  20. M M Bhatti, A Shahid, T Abbas, S Z Alamri, R Ellahi. Study of activation energy on the movement of gyrotactic microorganism in a magnetized nanofluids past a porous plate. Processes, 2020, 8(3): 328.

    Article  Google Scholar 

  21. K Hiemenz. Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder, Dinglers Polytech. J, 1911, 326: 321–324.

    Google Scholar 

  22. N S Akbar, Z H Khan, S Nadeem. The combined effects of slip and convective boundary conditions on stagnation-point flow of CNT suspended nanofluid over a stretching sheet, J Mol Liq, 2014, 196: 21–25.

    Article  Google Scholar 

  23. Z Iqbal, E Azhar, E N Maraj. Transport phenomena of carbon nanotubes and bioconvection nanoparticles on stagnation point flow in presence of induced magnetic field, Physica E Low Dimens Syst Nanostruct, 2017, 91: 128–135.

    Article  Google Scholar 

  24. T Hayat, M Farooq, A Alsaedi. Homogeneous-heterogeneous reactions in the stagnation point flow of carbon nanotubes with Newtonian heating. AIP Adv, 2015, 5(2): 027130.

    Article  Google Scholar 

  25. R U Haq, S Nadeem, Z H Khan, N F M Noor. Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes, Physica B: Condens Matter, 2015, 457: 40–47.

    Article  Google Scholar 

  26. M A Chaudhary, J H Merkin. Free convection boundary layers driven by exothermic surface reactions: critical ambient temperatures. Math Eng Industry, 1995, 5(2): 129–145.

    MathSciNet  MATH  Google Scholar 

  27. J H Merkin, I Pop. Stagnation point flow past a stretching/shrinking sheet driven by Arrhenius kinetics, Appl Math Comput, 2018, 337: 583–590.

    MathSciNet  MATH  Google Scholar 

  28. Q Z Xue. Model for thermal conductivity of carbon nanotube-based composites. Physica B: Condens Matter, 2005, 368(1–4): 302–307.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohail Nadeem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadeem, S., Ahmad, S., Issakhov, A. et al. MHD stagnation point flow of nanofluid with SWCNT and MWCNT over a stretching surface driven by Arrhenius kinetics. Appl. Math. J. Chin. Univ. 37, 366–382 (2022). https://doi.org/10.1007/s11766-022-3966-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11766-022-3966-z

MR Subject Classification

Keywords

Navigation