Skip to main content
Log in

Classification and existence of positive entire k-convex radial solutions for generalized nonlinear k-Hessian system

  • Published:
Applied Mathematics-A Journal of Chinese Universities Aims and scope Submit manuscript

Abstract

In this paper, we consider the following generalized nonlinear k-Hessian system

$$\left\{ {\matrix{{{\cal G}\left( {S_k^{{1 \over k}}(\lambda ({D^2}{z_1}))} \right)S_k^{{1 \over k}}(\lambda ({D^2}{z_1})) = \varphi (\left| x \right|,{z_1},{z_2}),\,\,\,x \in {\mathbb{R}^N},} \cr {{\cal G}\left( {S_k^{{1 \over k}}(\lambda ({D^2}{z_2}))} \right)S_k^{{1 \over k}}(\lambda ({D^2}{z_2})) = \varphi (\left| x \right|,{z_1},{z_2}),\,\,\,x \in {\mathbb{R}^N},} \cr } \,} \right.$$

where \({\cal G}\) is a nonlinear operator and S k (λ(D 2 z)) stands for the k-Hessian operator. We first are interested in the classification of positive entire k-convex radial solutions for the k-Hessian system if φ(∣x∣, z 1, z 2) = b(∣x∣)φ(z 1, z 2) and ψ(∣x∣, z 1, z2) = h(∣x∣)ψ(z 1). Moreover, with the help of the monotone iterative method, some new existence results on the positive entire k-convex radial solutions of the k-Hessian system with the special non-linearities ψ,φ are given, which improve and extend many previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. X Zhang, Y Wu, Y Cui. Existence and nonexistence of blow-up solutions for a Schrödinger equation involving a nonlinear operator, Appl Math Lett, 2018, 82: 85–91.

    Article  MathSciNet  Google Scholar 

  2. A Ghanmi, H Maagli, V Radulescu, N Zeddini. Large and bounded solutions for a class of nonlinear Schrödinger stationary systems, Anal Appl, 2009, 7(4): 391–404.

    Article  MathSciNet  Google Scholar 

  3. D P Covei. Symmetric solutions for an elliptic partial differential equation that arises in stochastic production planning with production constraints, Appl Math Comput, 2019, 350: 190–197.

    MathSciNet  MATH  Google Scholar 

  4. A V Lair. Large solution of mixed sublinear/superlinear elliptic equations, J Math Anal Appl, 2008, 346(1): 99–106.

    Article  MathSciNet  Google Scholar 

  5. X Zhang, L Liu. The existence and nonexistence of entire positive solutions of semilinear elliptic systems with gradient term, J Math Anal Appl, 2010, 371(1): 300–308.

    Article  MathSciNet  Google Scholar 

  6. Z Zhang, K Wang. Existence and nonexistence of solutions for a class of Monge-Ampère equations, J Differential Equations, 2009, 246(7): 2849–2875.

    Article  MathSciNet  Google Scholar 

  7. H Li, P Zhang, Z Zhang. A remark on the existence of entire positive solutions for a class of semilinear elliptic system, J Math Anal Appl, 2010, 365(1): 338–341.

    Article  MathSciNet  Google Scholar 

  8. A V Lair, A W Wood. Existence of entire large positive solutions of semilinear elliptic systems, J Differential Equations, 2000, 164(2): 380–394.

    Article  MathSciNet  Google Scholar 

  9. X Wang. A class of fully nonlinear elliptic equations and related functionals, Indiana Univ Math J, 1994, 43(1): 25–54.

    Article  MathSciNet  Google Scholar 

  10. X Zhang. Analysis of nontrivial radial solutions for singular superlinear k-Hessian equations, Appl Math Lett, 2020, 106: 106409.

    Article  MathSciNet  Google Scholar 

  11. N Trudinger, X Wang. The Monge-Ampère equation and its geometric applications, Handbook of Geometric Analysis. Higher Education Press, Beijing, 2008, 1: 467–524.

    Google Scholar 

  12. C Escudero. Geometric principles of surface growth, Phys Rev Lett, 2008, 101(19): 196102.

    Article  Google Scholar 

  13. C Escudero, E Korutcheva. Origins of scaling relations in nonequilibrium growth, J Phys A Math and Theor, 2012, 45(12): 125005.

    Article  MathSciNet  Google Scholar 

  14. J F de Oliveira, J M do O, P Ubilla. Existence for a k-Hessian equation involving supercritical growth, J Differential Equations, 2019, 267(2): 1001–1024.

    Article  MathSciNet  Google Scholar 

  15. C Escudero. On polyharmonic regularizations of k-Hessian equations: Variational methods, Nonlinear Anal, 2015, 125(1): 732–758.

    Article  MathSciNet  Google Scholar 

  16. C H Lu. A variational approach to complex Hessian equations inn, J Math Anal Appl, 2015, 431: 228–259.

    Article  MathSciNet  Google Scholar 

  17. X Zhang, J Xu, J Jiang, Y Wu, Y Cui. The convergence analysis and uniqueness of blow-up solutions for a Dirichlet problem of the general k-Hessian equations, Appl Math Lett, 2020, 102: 106124.

    Article  MathSciNet  Google Scholar 

  18. D P Covei. A necessary and a sufficient condition for the existence of the positive radial solutions to Hessian equation and systems with weights, Acta Math Scientia, 2017, 37(1): 47–57.

    Article  MathSciNet  Google Scholar 

  19. D P Covei. A remark on the existence of entire large and bounded solutions to a (k 1, k 2)-Hessian system with gradient term, Acta Math Sinica (English Series), 2017, 33(6): 761–774.

    Article  MathSciNet  Google Scholar 

  20. B Wang, J Bao. Over-determined problems for k-Hessian equations in ring-shaped domains, Nonlinear Anal, 2015, 127: 143–156.

    Article  MathSciNet  Google Scholar 

  21. X Zhang, M Feng. Boundary blow-up solutions to the k-Hessian equation with singular weights, Nonlinear Anal, 2018, 167: 51–66.

    Article  MathSciNet  Google Scholar 

  22. X Zhang, M Feng. The existence and asymptotic behavior of boundary blow-up solutions to the k-Hessian equation, J Differential Equations, 2019, 267(8): 4626–4672.

    Article  MathSciNet  Google Scholar 

  23. M Feng, X Zhang. On a k-Hessian equation with a weakly superlinear nonlinearity and singular weights, Nonlinear Anal, 2020, 190: 111601.

    Article  MathSciNet  Google Scholar 

  24. M Feng. New results of coupled system of k-Hessian equations, Appl Math Lett, 2019, 94: 196–203.

    Article  MathSciNet  Google Scholar 

  25. P Balodis, C Escudero. Polyharmonic k-Hessian equations inN, J Differential Equations, 2018, 265: 3363–3399.

    Article  MathSciNet  Google Scholar 

  26. D P Covei. The Keller-Osserman-type conditions for the study of a semilinear elliptic system, Bound Value Probl, 2019, 2019(1): 104.

    Article  MathSciNet  Google Scholar 

  27. Z Zhang, S Zhou. Existence of entire positive k-convex radial solutions to Hessian equations and systems with weights, Appl Math Lett, 2015, 50: 48–55.

    Article  MathSciNet  Google Scholar 

  28. D P Covei. Solutions with radial symmetry for a semilinear elliptic system with weights, Appl Math Lett, 2018, 76: 187–194.

    Article  MathSciNet  Google Scholar 

  29. X Zhang, L Liu, Y Wu, Y Cui. A sufficient and necessary condition of existence of blowup radial solutions for a k-Hessian equations with a nonlinear operator, Nonlinear Anal Model Control, 2020, 25(1): 126–143.

    MathSciNet  MATH  Google Scholar 

  30. G Wang, Z Yang, L Zhang, D Baleanu. Radial solutions of a nonlinear k-Hessian system involving a nonlinear operator, Commun Nonlinear Sci Numer Simulat, 2020, 91: 105396.

    Article  MathSciNet  Google Scholar 

  31. L Zhang, B Ahmad, G Wang. The existence of an extremal solution to a nonlinear system with the right-handed Riemann-Liouville fractional derivative, Appl Math Lett, 2014, 31: 1–6.

    Article  MathSciNet  Google Scholar 

  32. L Zhang, B Ahmad, G Wang. Explicit iterations and extremal solutions for fractional differential equations with nonlinear integral boundary conditions, Appl Math Comput, 2015, 268: 388–392.

    MathSciNet  MATH  Google Scholar 

  33. G Wang. Explicit iteration and unbounded solutions for fractional integral boundary value problem on an infinite interval, Appl Math Lett, 2015, 47: 1–7.

    Article  MathSciNet  Google Scholar 

  34. G Wang. Twin iterative positive solutions of fractional q-difference Schrödinger equations, Appl Math Lett, 2018, 76: 103–109.

    Article  MathSciNet  Google Scholar 

  35. G Wang, X Ren, L Zhang, B Ahmad. Explicit iteration and unique positive solution for a Caputo-Hadamard fractional turbulent flow model, IEEE Access, 2019, 7: 109833–109839.

    Article  Google Scholar 

  36. L Zhang, N Qin, B Ahmad. Explicit iterative solution of a Caputo-Hadamard-type fractional turbulent flow model, Math Meth Appl Sci, 2020, DOI: https://doi.org/10.1002/mma.6277.

  37. G Wang, Z Yang, R P Agarwal, L Zhang. Study on a class of Schrödinger elliptic system involving a nonlinear operator, Nonlinear Anal Model Control, 2020, 25(5): 846–859.

    MathSciNet  MATH  Google Scholar 

  38. X Ji, J Bao. Necessary and sufficient conditions on solvability for Hessian inequalities, Proc Amer Math Soc, 2010, 138: 175–188.

    Article  MathSciNet  Google Scholar 

  39. Z Zhang, H Liu. Existence of entire radial large solutions for a class of Monge-Ampère type equations and systems, Rocky Mountain J Math, 2020, 50(5): 1893–1899.

    MathSciNet  MATH  Google Scholar 

  40. D P Covei. A remark on the radial solutions of a modified Schrödinger system by dual approach, Math Commun, 2019, 24: 245–263.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-tao Wang.

Additional information

Supported by the National Natural Science Foundation of China(11501342,12001344).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Lh., Yang, Zd., Wang, Gt. et al. Classification and existence of positive entire k-convex radial solutions for generalized nonlinear k-Hessian system. Appl. Math. J. Chin. Univ. 36, 564–582 (2021). https://doi.org/10.1007/s11766-021-4363-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11766-021-4363-8

MR Subject Classification

Keywords

Navigation