Skip to main content
Log in

Stochastic comparisons of relevation allocation policies in coherent systems

  • Original paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

In reliability engineering, the relevation model can be adopted to characterize the performance of redundancy allocation for coherent systems. In this paper, we investigate the allocation problems of relevations for two nodes in a coherent system with independent components for enhancing system reliability. We first investigate the optimal allocation policy of two relevations for two nodes of the system under certain conditions. As a special setting of the relevation, we further discuss optimal allocation strategies for a batch of minimal repairs allocated to two components of the coherent system by applying the useful tool of majorization order. Sufficient conditions are established in terms of structural relationships between the components induced by minimal cut or path sets and the reliabilities of components and relevations. Some numerical examples are provided as illustrations. A real application in aircraft indicator lights systems is also presented to show the availability of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. This criteria is from the report of the International Civil Aviation Organization standard, Annex 14, Chapter 6 (cf. ICAO 2018).

  2. The Reliability Analysis Center (RAC) is a US DoD Information Analysis Center, which is operated by IIT Research Institute, dedicated to the collection and dissemination of reliability data for components operated in fielded systems (cf. Denson 1991). It is regarded as the largest publicly available source of reliability data.

References

  • Arriaza A, Navarro J, Suárez-Llorens A (2018) Stochastic comparisons of replacement policies in coherent systems under minimal repair. Nav Res Logist 65:550–565

    Article  MathSciNet  MATH  Google Scholar 

  • Ascher H, Feingold H (1984) Repairable systems reliability. Dekker, New York

    MATH  Google Scholar 

  • Barlow E, Proschan F (1975) Statistical theory of reliability and life testing: probability models (international series in decision processes). Holt, Rinehart & Winston of Canada Ltd

  • Barlow R, Hunter L (1960) Optimum preventive maintenance policies. Oper Res 8:90–100

    Article  MathSciNet  MATH  Google Scholar 

  • Baxter LA (1982) Reliability applications of the relevation transform. Naval Res Logist Q 29:323–330

    Article  MathSciNet  MATH  Google Scholar 

  • Bayramoglu Kavlak K (2017) Reliability and mean residual life functions of coherent systems in an active redundancy. Nav Res Logist 64:19–28

    Article  MathSciNet  MATH  Google Scholar 

  • Beare BK, Moon J-M (2015) Nonparametric tests of density ratio ordering. Economet Theor 31:471–492

    Article  MathSciNet  MATH  Google Scholar 

  • Belzunce F, Martínez-Riquelme C, Mercader JA, Ruiz JM (2021) Comparisons of policies based on relevation and replacement by a new one unit in reliability. TEST 30:211–227

    Article  MathSciNet  MATH  Google Scholar 

  • Belzunce F, Martínez-Riquelme C, Ruiz JM (2019) Allocation of a relevation in redundancy problems. Appl Stoch Model Bus Ind 35:492–503

    Article  MathSciNet  Google Scholar 

  • Belzunce F, Riquelme CM, Mulero J (2016) An introduction to stochastic orders. Academic Press, London

    MATH  Google Scholar 

  • Birnbaum ZW (1968) On the importance of different components in a multicomponent system. Technical Report Washington Univ Seattle Lab of Statistical Research

  • Boland PJ, Proschan F, Tong YL (1989) Optimal arrangement of components via pairwise rearrangements. Nav Res Logist 36:807–815

    Article  MathSciNet  MATH  Google Scholar 

  • Coit DW, Jin T (2000) Gamma distribution parameter estimation for field reliability data with missing failure times. IIE Trans 32:1161–1166

    Article  Google Scholar 

  • Da G, Ding W (2015) Component level versus system level \( k \)-out-of-\( n \) assembly systems. IEEE Trans Reliab 65:425–433

    Article  Google Scholar 

  • Davidov O, Herman A (2010) Testing for order among k populations: theory and examples. Can J Stat 38:97–115

    Article  MathSciNet  MATH  Google Scholar 

  • Denson W (1991) Nonelectronic parts reliability data. Reliability Analysis Center

  • Ding W, Li X (2012) The optimal allocation of active redundancies to k-out-of-n systems with respect to hazard rate ordering. J Stat Planning Inference 142:1878–1887

    Article  MathSciNet  MATH  Google Scholar 

  • El Barmi H, McKeague IW (2016) Testing for uniform stochastic ordering via empirical likelihood. Ann Inst Stat Math 68:955–976

    Article  MathSciNet  MATH  Google Scholar 

  • El-Neweihi E, Proschan F, Sethuraman J (1986) Optimal allocation of components in parallel–series and series–parallel systems. J Appl Probab 23:770–777

    Article  MathSciNet  MATH  Google Scholar 

  • Fang R, Li X (2020) Active redundancy allocation for coherent systems with independent and heterogeneous components. Probab Eng Inf Sci 34:72–91

    Article  MathSciNet  MATH  Google Scholar 

  • ICAO (2018) Annex 14. Aerodromes-Aerodrome Design and Operations, International Standardsand Recommended Practices

  • Jung WS, Han SH, Ha J (2004) A fast bdd algorithm for large coherent fault trees analysis. Reliab Eng Syst Saf 83:369–374

    Article  Google Scholar 

  • Kabashkin I (2016) Effectiveness of redundancy in communication network of air traffic management system. In: International conference on dependability and complex systems. Springer, pp 257–265

  • Kayedpour F, Amiri M, Rafizadeh M, Nia AS (2017) Multi-objective redundancy allocation problem for a system with repairable components considering instantaneous availability and strategy selection. Reliab Eng Syst Saf 160:11–20

    Article  Google Scholar 

  • Krakowski M (1973) The relevation transform and a generalization of the gamma distribution function. Revue française d’automatique, informatique, recherche opérationnelle. Recherche opérationnelle 7:107–120

  • Kvassay M, Levashenko V, Zaitseva E (2016) Analysis of minimal cut and path sets based on direct partial Boolean derivatives. Proc Inst Mech Eng Part O: J Risk Reliab 230:147–161

    Google Scholar 

  • Marshall AW, Olkin I, Arnold BC (1979) Inequalities: theory of majorization and its applications. Springer

  • Meng F (2000) Relationships of fussell-vesely and birnbaum importance to structural importance in coherent systems. Reliab Eng Syst Saf 67:55–60

    Article  Google Scholar 

  • Navarro J (2022) Introduction to system reliability theory. Springer, Berlin

    Book  MATH  Google Scholar 

  • Navarro J, Arriaza A, Suárez-Llorens A (2019) Minimal repair of failed components in coherent systems. Eur J Oper Res 279:951–964

    Article  MathSciNet  MATH  Google Scholar 

  • Navarro J, Fernández-Martínez P (2021) Redundancy in systems with heterogeneous dependent components. Eur J Oper Res 290:766–778

    Article  MathSciNet  MATH  Google Scholar 

  • Navarro J, Longobardi M, Pellerey F (2017) Comparison results for inactivity times of \(k\)-out-of-\(n\) and general coherent systems with dependent components. TEST 26:822–846

    Article  MathSciNet  MATH  Google Scholar 

  • Rochdi Z, Driss B, Mohamed T (1999) Industrial systems maintenance modelling using petri nets. Reliab Eng Syst Saf 65:119–124

    Article  Google Scholar 

  • Shaked M, Shanthikumar G (2007) Stochastic orders. Springer, Berlin

  • Shaked M, Shanthikumar JG (1992) Optimal allocation of resources to nodes of parallel and series systems. Adv Appl Probab 24:894–914

    Article  MathSciNet  MATH  Google Scholar 

  • Tang C-F, Wang D, Tebbs JM (2017) Nonparametric goodness-of-fit tests for uniform stochastic ordering. Ann Stat 45:2565

    Article  MathSciNet  MATH  Google Scholar 

  • Torrado N (2022) Optimal component-type allocation and replacement time policies for parallel systems having multi-types dependent components. Reliab Eng Syst Saf, (p 108502)

  • Tortorella M, Frakes WB (2006) A computer implementation of the separate maintenance model for complex-system reliability. Qual Reliab Eng Int 22:757–770

    Article  Google Scholar 

  • Vatn J (1992) Finding minimal cut sets in a fault tree. Reliab Eng Syst Saf 36:59–62

    Article  Google Scholar 

  • Wu J, Ding W, Zhang Y, Zhao P (2022) On reliability improvement for coherent systems with a relevation. Naval Res Logist 69:654–666

    Article  MathSciNet  Google Scholar 

  • Yan R, Zhang J, Zhang Y (2021) Optimal allocation of relevations in coherent systems. J Appl Probab 58:1152–1169

    Article  MathSciNet  MATH  Google Scholar 

  • Yeo WM, Yuan X-M (2009) Optimal warranty policies for systems with imperfect repair. Eur J Oper Res 199:187–197

    Article  MathSciNet  MATH  Google Scholar 

  • You Y, Fang R, Li X (2016) Allocating active redundancies to \(k\)-out-of-\(n\) reliability systems with permutation monotone component lifetimes. Appl Stoch Model Bus Ind 32:607–620

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang J, Yan R, Wang J (2022) Reliability optimization of parallel-series and series-parallel systems with statistically dependent components. Appl Math Model 102:618–639

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang J, Zhang Y (2022) A copula-based approach on optimal allocation of hot standbys in series systems. Naval Res Logist, pp 1–1)

  • Zhang Y, Zhao P (2019) Optimal allocation of minimal repairs in parallel and series systems. Nav Res Logist 66:517–526

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao P, Chan PS, Ng HKT (2012) Optimal allocation of redundancies in series systems. Eur J Oper Res 220:673–683

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for the insightful and constructive comments and suggestions from the Editor-in-Chief, an Associate Editor, and two anonymous reviewers, which have greatly improved the presentation of this manuscript. Yiying Zhang acknowledges the financial support from the National Natural Science Foundation of China (No. 12101336), and GuangDong Basic and Applied Basic Research Foundation (No. 2023A1515011806). Jiandong Zhang acknowledges the financial support from the Doctoral Research Fund of Northwest Normal University (6014/202203101204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiying Zhang.

Ethics declarations

conflict of interest

No potential competing interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Proofs of the main results

Appendix A: Proofs of the main results

First, we express our heartfelt thanks to Dr. Weiyong Ding for the careful reading on our previous work (Yan et al. 2021), Optimal allocation of relevations in coherent systems, Journal of Applied Probability, 58, 1152–1169), and pointing out that the proof of Theorem 1 is not correct under the assumption \(T_1 \le _{hr} T_2\). The main problem is that the application of Lemma 1 is not correct in the end of that proof. As a remedy, the following Lemma 4 is a corrected version of the result with the assumption \(T_1 \le _{hr} T_2\) replaced by \(T_1 \le _{lr} T_2\). For this case, the proof can be proven separately without the help of Lemma 1.

Lemma 4

Let \(T_1,T_2, \dots , T_n\) be the n components lifetimes with survival functions \(\overline{F}_1, \overline{F}_2, \dots ,\) \( \overline{F}_n\) in a series system, respectively. Let \(S_1\) and \(S_2\) be the lifetimes of two relevations with survival functions \( \overline{G}_1\) and \(\overline{G}_2\), respectively. Denote

$$\begin{aligned} V_1=\min \Big \{ T_1\#S_1, T_2\#S_2, T_3, \dots , T_n \Big \} \end{aligned}$$

and

$$\begin{aligned} V_2=\min \Big \{T_1\#S_2, T_2\#S_1, T_3, \dots , T_n \Big \}. \end{aligned}$$

If \(T_1 \le _{lr} T_2\) and \(S_1 \ge _{hr} S_2\), then \(V_1 \ge _{st} V_2.\)

Proof

The survival functions of \(V_1\) and \(V_2\) can be expressed as

$$\begin{aligned} \overline{H}_{V_1}(t) =\prod _{ l=3 }^n \overline{F}_l(t) \Bigg \{ \Big ( \overline{F}_1(t) + \overline{G}_1(t)\int _0^t \frac{f_1( u )}{\overline{G}_1( u )} \textrm{d}u \Big ) \Big ( \overline{F}_2(t) + \overline{G}_2(t)\int _0^t \frac{f_2( u )}{\overline{G}_2( u )} \textrm{d}u \Big ) \Bigg \} \end{aligned}$$

and

$$\begin{aligned} \overline{H}_{V_2}(t) =\prod _{ l=3 }^n \overline{F}_l(t) \Bigg \{ \Big ( \overline{F}_1(t) + \overline{G}_2(t)\int _0^t \frac{f_1( u )}{\overline{G}_2( u )} \textrm{d}u \Big ) \Big ( \overline{F}_2(t) + \overline{G}_1(t)\int _0^t \frac{f_2( u )}{\overline{G}_1( u )} \textrm{d}u \Big ) \Bigg \}, \end{aligned}$$

respectively. Observe that

$$\begin{aligned}{} & {} \overline{H}_{V_1}(t)-\overline{H}_{V_2}(t)\\{} & {} \quad = \overline{F}_1(t)\overline{F}_2(t) + \overline{F}_1(t){{\overline{G}}_2}(t)\int _0^t {\frac{{f_2(u)}}{{\overline{G}_2(u)}}} \textrm{d}u + \overline{F}_2(t)\overline{G}_1(t)\int _0^t {\frac{{ f_1(u)}}{{\overline{G}_1(u)}}} \textrm{d}u \\{} & {} \qquad + \overline{G}_1(t)\overline{G}_2(t)\int _0^t {\frac{{ f_1(u)}}{{\overline{G}_1(u)}}} \textrm{d}u\int _0^t {\frac{{f_2(u)}}{{\overline{G}_2(u)}}} \textrm{d}u \\{} & {} \qquad -\Big ( \overline{F}_1(t)\overline{F}_2(t) + \overline{F}_1(t)\overline{G}_1(t)\int _0^t {\frac{{ f_2(u)}}{{\overline{G}_1(u)}}} \textrm{d}u + \overline{F}_2(t)\overline{G}_2(t)\int _0^t {\frac{{ f_1(u)}}{{\overline{G}_2(u)}}} \textrm{d}u \\{} & {} \qquad + \overline{G}_1(t)\overline{G}_2(t)\int _0^t {\frac{{ f_1(u)}}{{\overline{G}_2(u)}}} \textrm{d}u\int _0^t {\frac{{ f_2(u)}}{{\overline{G}_1(u)}}} \textrm{d}u \Big ) \\{} & {} \quad = \int _0^t {\overline{F}_1(t) f_2(u) \left[ {\frac{{\overline{G}_2(t)}}{{\overline{G}_2(u)}} - \frac{{\overline{G}_1(t)}}{{\overline{G}_1(u)}}} \right] } \textrm{d}u + \int _0^t {\overline{F}_2(t) f_1(u) \left[ {\frac{{\overline{G}_1(t)}}{{\overline{G}_1(u)}} - \frac{{\overline{G}_2(t)}}{{\overline{G}_2(u)}}} \right] } \textrm{d}u \\{} & {} \qquad + \overline{G}_1(t)\overline{G}_2(t) \left[ {\int _0^t {\frac{{ f_1(u)}}{{\overline{G}_1(u)}}} \textrm{d}u\int _0^t {\frac{{ f_2(u)}}{{\overline{G}_2(u)}}} \textrm{d}u - \int _0^t {\frac{{ f_1(u)}}{{\overline{G}_2(u)}}} \textrm{d}u\int _0^t {\frac{{ f_2(u)}}{{\overline{G}_1(u)}}} \textrm{d}u} \right] \\{} & {} \quad =: \phi _1(t)+\phi _2(t), \end{aligned}$$

where

$$\begin{aligned} \phi _1(t) = \int _0^t { \Big [{\overline{F}_2(t)f_1(u) - \overline{F}_1(t)f_2(u)} \Big ] \left[ {\frac{\overline{G}_1(t)}{\overline{G}_1(u)} - \frac{\overline{G}_2(t)}{\overline{G}_2(u)}} \right] } \textrm{d}u \end{aligned}$$

and

$$\begin{aligned} \phi _2(t)=\overline{G}_1(t)\overline{G}_2(t) \left[ {\int _0^t {\frac{f_1(u)}{\overline{G}_1(u)}} \textrm{d}u\int _0^t {\frac{f_2(u)}{\overline{G}_2(u)}} \textrm{d}u - \int _0^t {\frac{f_1(u)}{\overline{G}_2(u)}} \textrm{d}u\int _0^t {\frac{f_2(u)}{\overline{G}_1(u)}} \textrm{d}u} \right] . \end{aligned}$$

Note that \(T_1 \le _{lr} T_2\) implies \( {\overline{F}_2(t)f_1(u) - \overline{F}_1(t)f_2(u)} \ge 0\), for all \( 0 \le u \le t\). On the other hand, \(S_1 \ge _{hr} S_2\) is equivalent to

$$\begin{aligned} \frac{\overline{G}_1(t)}{\overline{G}_2(t)} \ge \frac{\overline{G}_1(u)}{\overline{G}_2(u)},\quad \text { for all } 0 \le u \le t, \end{aligned}$$

that is, \({\frac{\overline{G}_1(t)}{\overline{G}_1(u)} - \frac{\overline{G}_2(t)}{\overline{G}_2(u)}}\) is also non-negative, for all \( 0 \le u \le t\). Hence, \(\phi _1(t)\) is non-negative for all \(t\in {\mathbb {R}^{}}_+\).

Observe that

$$\begin{aligned}{} & {} \phi _2(t) \overset{\textrm{sign}}{=}\ {\int _0^t {\frac{f_1(u)}{\overline{G}_1(u)}} \textrm{d}u\int _0^t {\frac{f_2(u)}{\overline{G}_2(u)}} \textrm{d}u - \int _0^t {\frac{f_1(u)}{\overline{G}_2(u)}} \textrm{d}u\int _0^t {\frac{f_2(u)}{\overline{G}_1(u)}} \textrm{d}u}\\{} & {} \quad =\int _0^t \int _0^t \frac{f_1(u_1) f_2(u_2)}{\overline{G}_1(u_1) \overline{G}_2(u_2)}\textrm{d}u_1 \textrm{d}u_2 -\int _0^t \int _0^t \frac{f_1(u_1) f_2(u_2)}{\overline{G}_2(u_1) \overline{G}_1(u_2)}\textrm{d}u_1 \textrm{d}u_2\\{} & {} \quad =\int _0^t \int _0^t f_1(u_1) f_2(u_2) \bigg [\frac{1}{\overline{G}_1(u_1) \overline{G}_2(u_2)}-\frac{1}{\overline{G}_1(u_2) \overline{G}_2(u_1)} \bigg ]\textrm{d}u_1 \textrm{d}u_2 \\{} & {} \quad =\int _0^{u_1} \int _{u_2}^t f_1(u_1) f_2(u_2) \bigg [\frac{1}{\overline{G}_1(u_1) \overline{G}_2(u_2)}-\frac{1}{\overline{G}_1(u_2) \overline{G}_2(u_1)} \bigg ]\textrm{d}u_1 \textrm{d}u_2 \\{} & {} \qquad +\int _0^{u_1} \int _{u_2}^t {f_1(u_2) f_2(u_1) } \bigg [\frac{1}{\overline{G}_1(u_2) \overline{G}_2(u_1)}-\frac{1}{\overline{G}_1(u_1) \overline{G}_2(u_2)} \bigg ]\textrm{d}u_1 \textrm{d}u_2\\{} & {} \quad =\int _0^{u_1} \int _{u_2}^t \bigg [f_1(u_1) f_2(u_2)-f_1(u_2) f_2(u_1)\bigg ] \bigg [\frac{1}{\overline{G}_1(u_1) \overline{G}_2(u_2)} -\frac{1}{\overline{G}_1(u_2) \overline{G}_2(u_1)} \bigg ]\textrm{d}u_1 \textrm{d}u_2. \end{aligned}$$

For any \(u_1 \le u_2\), note that \(T_1 \le _{lr} T_2\) and \(S_1 \ge _{hr} S_2\) imply

$$\begin{aligned} f_1(u_1) f_2(u_2)-f_1(u_2) f_2(u_1)\ge 0 \end{aligned}$$

and

$$\begin{aligned} \frac{1}{\overline{G}_1(u_1) \overline{G}_2(u_2)}-\frac{1}{\overline{G}_1(u_2) \overline{G}_2(u_1)} \ge 0, \end{aligned}$$

respectively. Hence, \(\phi _2(t)\) is non-negative for all \(t\in {\mathbb {R}}_+\). To sum up, for all \(t\in {\mathbb {R}}_+\),

$$\begin{aligned} \overline{H}_{V_1}(t) - \overline{H}_{V_2}(t) =\phi _1(t)+\phi _2(t) \ge 0, \end{aligned}$$

and thus the proof is completed. \(\square \)

Now, we are ready to present the proofs of the main results in this paper. Some of the proofs will depend on the corrected result in Lemma 4.

1.1 Appendix A.1: Proof of Theorem 1

Proof

Denote the distribution functions of \(\tau (X_k\#Y_1, X_l\#Y_2, \varvec{X}^{(k,l)})\) and \(\tau (X_k\#Y_2, X_l\#Y_1, \varvec{X}^{(k,l)})\) by \( F_{\tau _1}\) and \(F_{\tau _2}\), respectively. It suffices to prove that \( F_{\tau _1}(t) \le F_{\tau _2}(t)\), for all \(t \in {\mathbb {R}}_+\). According to Equation (3), we have

$$\begin{aligned} \tau (X_k\#Y_1, X_l\#Y_2, \varvec{X}^{(k,l)})= & {} \max \Big \{\min \{X_k\#Y_1, X_l\#Y_2,\underset{{\mathcal {P}} \in {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne k,l}{\min }X_i\},\\{} & {} \min \{X_l\#Y_2,\underset{{\mathcal {P}} \in {\mathcal {A}}_l\backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i\}, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}}}{\min }X_i \Big \}. \end{aligned}$$

Then, it can be obtained that

$$\begin{aligned} F_{\tau _1}(t)= & {} {\mathbb {P}}(\tau (X_k\#Y_1, X_l\#Y_2, \varvec{X}^{(k,l)}) \le t)\\= & {} {\mathbb {P}}(\min \{X_k\#Y_1, X_l\#Y_2,\underset{{\mathcal {P}} \in {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne k,l}{\min }X_i\}\\{} & {} \le t, \min \{X_l\#Y_2,\underset{{\mathcal {P}} \in {\mathcal {A}}_l\backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i\}\le t, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}}}{\min }X_i \le t)\\=: & {} {\mathbb {P}}(E_{kl}\cap E_{{\bar{k}}l} \cap E_{{\bar{k}} {\bar{l}}}), \end{aligned}$$

where \(E_{{\bar{k}} {\bar{l}}}=\Big \{ \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}}}{\min }X_i \le t \Big \}\), \(E_{kl}=\Big \{\min \{X_k\#Y_1, X_l\#Y_2,\underset{{\mathcal {P}} \in {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne k,l}{\min }X_i\} \le t \Big \}\), and \(E_{{\bar{k}}l}=\Big \{ \min \{X_l\#Y_2,\underset{{\mathcal {P}} \in {\mathcal {A}}_l\backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i\}\le t \Big \}\). Based on the decomposition method in Wu et al. (2022), we have

$$\begin{aligned} {\mathbb {P}}(E_{kl}\cap E_{{\bar{k}}l} \cap E_{{\bar{k}} {\bar{l}}})= & {} {\mathbb {P}}(E_{{\bar{k}} {\bar{l}}}) -{\mathbb {P}}({{\overline{E}}_{kl}}\cap {E_{\bar{k} {\bar{l}}} }) \nonumber \\{} & {} -{\mathbb {P}}({{\overline{E}}_{{\bar{k}}l}}\cap {E_{\bar{k} {\bar{l}}} } ) +{\mathbb {P}}({{\overline{E}}_{kl}}\cap {E_{\bar{k} {\bar{l}}} } \cap {{\overline{E}}_{{\bar{k}}l}} ). \end{aligned}$$
(A.1)

First, one can calculate that

$$\begin{aligned} {\mathbb {P}}({{\overline{E}}_{kl}}\cap {E_{\bar{k} {\bar{l}}} })= & {} {\mathbb {P}}(\min \{X_k\#Y_1, X_l\#Y_2,\underset{{\mathcal {P}} \in {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne k,l}{\min }X_i\}> t, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}} }{\min }X_i \le t)\\= & {} {\mathbb {P}}( X_k\#Y_1> t){\mathbb {P}}( X_l\#Y_2> t) {\mathbb {P}}(\underset{{\mathcal {P}} \in {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne k,l}{\min }X_i> t, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}} }{\min }X_i \le t),\\ {\mathbb {P}}({{\overline{E}}_{{\bar{k}}l}}\cap {E_{\bar{k} {\bar{l}}} })= & {} {\mathbb {P}}(\min \{ X_l\#Y_2,\underset{{\mathcal {P}} \in {\mathcal {A}}_l \backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i\}> t, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}} }{\min }X_i \le t)\\= & {} {\mathbb {P}}( X_l\#Y_2> t) {\mathbb {P}}( \underset{{\mathcal {P}} \in {\mathcal {A}}_l \backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i> t, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}} }{\min }X_i \le t),\\ {\mathbb {P}}({{\overline{E}}_{kl}}\cap {E_{\bar{k} {\bar{l}}} } \cap {{\overline{E}}_{{\bar{k}}l}} )= & {} {\mathbb {P}}(\min \{X_k\#Y_1, X_l\#Y_2,\underset{{\mathcal {P}} \in {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne k,l}{\min }X_i\}> t,\\{} & {} \min \{X_l\#Y_2,\underset{{\mathcal {P}} \in {\mathcal {A}}_l\backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i\}> t, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}}}{\min }X_i \le t)\\= & {} {\mathbb {P}}( X_k\#Y_1> t){\mathbb {P}}( X_l\#Y_2> t) {\mathbb {P}}(\underset{{\mathcal {P}} \in {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne k,l}{\min }X_i> t,\\{} & {} \underset{{\mathcal {P}} \in {\mathcal {A}}_l\backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i > t, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}}}{\min }X_i \le t). \end{aligned}$$

Then the distribution function of \(\tau (X_k\#Y_1, X_l\#Y_2, \varvec{X}^{(k,l)})\) can be rewritten as

$$\begin{aligned} F_{\tau _1}(t)= & {} {\mathbb {P}}\left( \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}}}{\min }X_i \le t\right) -{\mathbb {P}}( X_k\#Y_1> t){\mathbb {P}}\\ {}{} & {} \times ( X_l\#Y_2> t) {\mathbb {P}}\left( \underset{{\mathcal {P}} \in {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne k,l}{\min }X_i> t, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}} }{\min }X_i \le t\right) \\{} & {} -{\mathbb {P}}( X_l\#Y_2> t) {\mathbb {P}}\left( \underset{{\mathcal {P}} \in {\mathcal {A}}_l \backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i> t, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}} }{\min }X_i \le t\right) \\{} & {} +{\mathbb {P}}( X_k\#Y_1> t){\mathbb {P}}( X_l\#Y_2> t) {\mathbb {P}}\\ {}{} & {} \times \left( \underset{{\mathcal {P}} \in {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne k,l}{\min }X_i> t, \underset{{\mathcal {P}} \in {\mathcal {A}}_l\backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i> t, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}}}{\min }X_i \le t\right) \\= & {} {\mathbb {P}}\left( \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}}}{\min }X_i \le t\right) -{\mathbb {P}}( X_k\#Y_1> t){\mathbb {P}}( X_l\#Y_2> t) {\mathbb {P}}\\ {}{} & {} \times (\underset{{\mathcal {P}} \in {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne k,l}{\min }X_i> t, \underset{{\mathcal {P}} \in {\mathcal {A}}_l\backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i \le t, \\{} & {} \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}}}{\min }X_i \le t) -{\mathbb {P}}( X_l\#Y_2> t) {\mathbb {P}}( \underset{{\mathcal {P}} \in {\mathcal {A}}_l \backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i > t, \\ {}{} & {} \times \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}} }{\min }X_i \le t). \end{aligned}$$

Similarly, the distribution function of \(\tau (X_k\#Y_2, X_l\#Y_1, \varvec{X}^{(k,l)})\) is given by

$$\begin{aligned} F_{\tau _2}(t)= & {} {\mathbb {P}}(\tau (X_k\#Y_2, X_l\#Y_1, \varvec{X}^{(k,l)}) \le t)\\= & {} {\mathbb {P}}(\underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}}}{\min }X_i \le t)\\{} & {} -{\mathbb {P}}( X_k\#Y_2> t){\mathbb {P}}( X_l\#Y_1> t) {\mathbb {P}}(\underset{{\mathcal {P}} \in {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne k,l}{\min }X_i> t, \underset{{\mathcal {P}} \in {\mathcal {A}}_l\backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i \le t, \\{} & {} \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}}}{\min }X_i \le t)\\{} & {} -{\mathbb {P}}( X_l\#Y_1> t) {\mathbb {P}}( \underset{{\mathcal {P}} \in {\mathcal {A}}_l \backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i > t, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}} }{\min }X_i \le t). \end{aligned}$$

Therefore, we have

$$\begin{aligned}{} & {} F_{\tau _2}(t)-F_{\tau _1}(t)\\{} & {} \quad ={\mathbb {P}}(\underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}}}{\min }X_i \le t) \\{} & {} \qquad -{\mathbb {P}}( X_k\#Y_2> t){\mathbb {P}}( X_l\#Y_1> t) {\mathbb {P}}(\underset{{\mathcal {P}} \in {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne k,l}{\min }X_i> t, \underset{{\mathcal {P}} \in {\mathcal {A}}_l\backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i \le t, \\{} & {} \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}}}{\min }X_i \!\le \! t) -{\mathbb {P}} ( X_l\#Y_1\!>\! t) {\mathbb {P}}( \underset{{\mathcal {P}} \in {\mathcal {A}}_l \backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i \!>\! t, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}} }{\min }X_i \!\le \! t)\\{} & {} \qquad -\left[ {\mathbb {P}}(\underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}}}{\min }X_i \le t) -{\mathbb {P}}( X_k\#Y_1> t){\mathbb {P}}( X_l\#Y_2> t) {\mathbb {P}} (\underset{{\mathcal {P}} \in {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne k,l}{\min }X_i> t, \underset{{\mathcal {P}} \in {\mathcal {A}}_l\backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i \le t, \right. \\{} & {} \qquad \left. \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}}}{\min }X_i \le t )-{\mathbb {P}}( X_l\#Y_2> t) {\mathbb {P}} ( \underset{{\mathcal {P}} \in {\mathcal {A}}_l \backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i> t, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}} }{\min }X_i \le t) \right] \\{} & {} \quad =\Big [{\mathbb {P}}( X_k\#Y_1> t){\mathbb {P}}( X_l\#Y_2> t)-{\mathbb {P}}( X_k\#Y_2> t){\mathbb {P}}( X_l\#Y_1> t) \Big ]\\{} & {} \quad \times {\mathbb {P}}(\underset{{\mathcal {P}} \in {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne k,l}{\min }X_i> t, \underset{{\mathcal {P}} \in {\mathcal {A}}_l\backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i \le t, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}}}{\min }X_i \le t)\\{} & {} \qquad +\Big [{\mathbb {P}}(X_l\#Y_2>t)-{\mathbb {P}}(X_l\#Y_1>t) \Big ]{\mathbb {P}}( \underset{{\mathcal {P}} \in {\mathcal {A}}_l \backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i> t, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}} }{\min }X_i \le t)\\{} & {} \quad =: D_{1}(t) {\mathbb {P}}(\underset{{\mathcal {P}} \in {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne k,l}{\min }X_i> t, \underset{{\mathcal {P}} \in {\mathcal {A}}_l\backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i \le t, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}}}{\min }X_i \le t)\\{} & {} \qquad +D_{2}(t){\mathbb {P}}( \underset{{\mathcal {P}} \in {\mathcal {A}}_l \backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i > t, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}} }{\min }X_i \le t), \end{aligned}$$

where \(D_{1}(t)={\mathbb {P}}( X_k\#Y_1> t){\mathbb {P}}( X_l\#Y_2> t)-{\mathbb {P}}( X_k\#Y_2> t){\mathbb {P}}( X_l\#Y_1> t)\) and \(D_{2}(t)= {\mathbb {P}}(X_l\#Y_2>t)-{\mathbb {P}}(X_l\#Y_1>t)\).

On one hand, according to the assumptions \(X_k \ge _{lr} X_l\) and \(Y_1 \le _{hr} Y_2\), and the result of Lemma 4, we have \(D_{1}(t)\ge 0\). On the other hand, \(Y_1 \le _{hr} Y_2\) implies

$$\begin{aligned} D_{2}(t)= & {} {\mathbb {P}}(X_l\#Y_2>t)-{\mathbb {P}}(X_l\#Y_1>t) =\overline{F}_l(t)\\{} & {} +\overline{G}_2(t)\int _0^t\frac{f_l(u)}{\overline{G}_2(u)}\textrm{d}u-\Big (\overline{F}_l(t)+\overline{G}_1(t)\int _0^t\frac{f_l(u)}{\overline{G}_1(u)}\textrm{d}u \Big ) \\= & {} \int _0^t \bigg (\frac{\overline{G}_2(t)f_l(u)}{\overline{G}_2(u)} -\frac{\overline{G}_1(t)f_l(u)}{\overline{G}_1(u)}\bigg )\textrm{d}u \ge 0. \end{aligned}$$

Then, it follows that both \(D_{1}(t)\) and \(D_{2}(t)\) are non-negative, meaning that \(F_{\tau _2}(t)\ge F_{\tau _1}(t)\), for all \(t \in {\mathbb {R}}_+\). Thus, the desired result is proved. \(\square \)

1.2 Appendix A.2: Proof of Theorem 2

Proof

The survival functions of \(\tau (X_k\#Y_1, X_l\#Y_2, \varvec{X}^{(k,l)})\) and \(\tau (X_k\#Y_2, X_l\#Y_1, \varvec{X}^{(k,l)})\) denote as \(\overline{F}_{\tau _1}\) and \({\overline{F}}_{\tau _2}\), respectively. Based on the minimal cut set decomposition in Equation (3) and \({\mathcal {S}}_k \subseteq {\mathcal {S}}_l\), we have

$$\begin{aligned} \tau (X_k\#Y_1, X_l\#Y_2, \varvec{X}^{(k,l)})= & {} \min \Big \{\max \{X_k\#Y_1, X_l\#Y_2,\underset{{\mathcal {C}} \in {\mathcal {S}}_k }{\min }\underset{i \in {\mathcal {C}}, i \ne k,l}{\max }X_i\}, \\{} & {} \max \{X_l\#Y_2,\underset{{\mathcal {C}} \in {\mathcal {S}}_l\backslash {\mathcal {S}}_k }{\min }\underset{i \in {\mathcal {C}}, i \ne l}{\max }X_i\}, \underset{{\mathcal {C}} \in {\mathcal {S}}\backslash {\mathcal {S}}_l }{\min }\underset{i \in {\mathcal {C}}}{\max }X_i \Big \}. \end{aligned}$$

using similar arguments with Equation (A.1), for any \(t\in {\mathbb {R}}_+\), we have

$$\begin{aligned} {\overline{F}}_{\tau _1}(t)= & {} {\mathbb {P}}(\max \{X_k\#Y_1, X_l\#Y_2,\underset{{\mathcal {C}} \in {\mathcal {S}}_k }{\min }\underset{i \in {\mathcal {C}}, i \ne k,l}{\max }X_i\}>t, \\{} & {} \max \{X_l\#Y_2,\underset{{\mathcal {C}} \in {\mathcal {S}}_l\backslash {\mathcal {S}}_k }{\min }\underset{i \in {\mathcal {C}}, i \ne l}{\max }X_i\}>t, \underset{{\mathcal {C}} \in {\mathcal {S}}\backslash {\mathcal {S}}_l }{\min }\underset{i \in {\mathcal {C}}}{\max }X_i>t)\\= & {} {\mathbb {P}}(\underset{{\mathcal {C}} \in {\mathcal {S}}\backslash {\mathcal {S}}_l }{\min }\underset{i \in {\mathcal {C}}}{\max }X_i>t) -{\mathbb {P}}( X_k\#Y_1\le t){\mathbb {P}}( X_l\#Y_2\le t) {\mathbb {P}}(\underset{{\mathcal {C}} \in {\mathcal {S}}_k }{\min }\underset{i \in {\mathcal {C}}, i \ne k,l}{\max }X_i \le t,\\{} & {} \quad \underset{{\mathcal {C}} \in {\mathcal {S}}\backslash {\mathcal {S}}_l }{\min }\underset{i \in {\mathcal {C}} }{\max }X_i> t)\\{} & {} -{\mathbb {P}}( X_l\#Y_2\le t) {\mathbb {P}}( \underset{{\mathcal {C}} \in {\mathcal {S}}_l \backslash {\mathcal {S}}_k }{\min }\underset{i \in {\mathcal {C}}, i \ne l}{\max }X_i \le t, \underset{{\mathcal {C}} \in {\mathcal {S}}\backslash {\mathcal {S}}_l }{\min }\underset{i \in {\mathcal {C}} }{\max }X_i> t)\\{} & {} +{\mathbb {P}}( X_k\#Y_1\le t){\mathbb {P}}( X_l\#Y_2\le t) {\mathbb {P}}(\underset{{\mathcal {C}} \in {\mathcal {S}}_k }{\min }\underset{i \in {\mathcal {C}}, i \ne k,l}{\max }X_i \le t,\\{} & {} \quad \underset{{\mathcal {C}} \in {\mathcal {S}}_l\backslash {\mathcal {S}}_k }{\min }\underset{i \in {\mathcal {C}}, i \ne l}{\max }X_i \le t, \underset{{\mathcal {C}} \in {\mathcal {S}}\backslash {\mathcal {S}}_l }{\min }\underset{i \in {\mathcal {C}}}{\max }X_i> t)\\= & {} {\mathbb {P}}(\underset{{\mathcal {C}} \in {\mathcal {S}}\backslash {\mathcal {S}}_l }{\min }\underset{i \in {\mathcal {C}}}{\max }X_i>t) -{\mathbb {P}}( X_k\#Y_1\le t){\mathbb {P}}( X_l\#Y_2\le t) {\mathbb {P}}(\underset{{\mathcal {C}} \in {\mathcal {S}}_k }{\min }\underset{i \in {\mathcal {C}}, i \ne k,l}{\max }X_i \le t,\\{} & {} \quad \underset{{\mathcal {C}} \in {\mathcal {S}}_l\backslash {\mathcal {S}}_k }{\min }\underset{i \in {\mathcal {C}}, i \ne l}{\max }X_i> t, \underset{{\mathcal {C}} \in {\mathcal {S}}\backslash {\mathcal {S}}_l }{\min }\underset{i \in {\mathcal {C}}}{\max }X_i> t) \\{} & {} -{\mathbb {P}}( X_l\#Y_2\le t) {\mathbb {P}}( \underset{{\mathcal {C}} \in {\mathcal {S}}_l \backslash {\mathcal {S}}_k }{\min }\underset{i \in {\mathcal {C}}, i \ne l}{\max }X_i \le t, \underset{{\mathcal {C}} \in {\mathcal {S}}\backslash {\mathcal {S}}_l }{\min }\underset{i \in {\mathcal {C}} }{\max }X_i > t). \end{aligned}$$

Similarly,

$$\begin{aligned} {\overline{F}}_{\tau _2}(t)= & {} {\mathbb {P}}(\underset{{\mathcal {C}} \in {\mathcal {S}}\backslash {\mathcal {S}}_l }{\min }\underset{i \in {\mathcal {C}}}{\max }X_i>t) \\{} & {} -{\mathbb {P}}( X_k\#Y_2\le t){\mathbb {P}}( X_l\#Y_1\le t) {\mathbb {P}}(\underset{{\mathcal {C}} \in {\mathcal {S}}_k }{\min }\underset{i \in {\mathcal {C}}, i \ne k,l}{\max }X_i \le t, \underset{{\mathcal {C}} \in {\mathcal {S}}_l\backslash {\mathcal {S}}_k }{\min }\underset{i \in {\mathcal {C}}, i \ne l}{\max }X_i> t, \\{} & {} \underset{{\mathcal {C}} \in {\mathcal {S}}\backslash {\mathcal {S}}_l }{\min }\underset{i \in {\mathcal {C}}}{\max }X_i> t) -{\mathbb {P}}( X_l\#Y_1\le t) {\mathbb {P}}( \underset{{\mathcal {C}} \in {\mathcal {S}}_l \backslash {\mathcal {S}}_k }{\min }\underset{i \in {\mathcal {C}}, i \ne l}{\max }X_i \le t, \underset{{\mathcal {C}} \in {\mathcal {S}}\backslash {\mathcal {S}}_l }{\min }\underset{i \in {\mathcal {C}} }{\max }X_i > t). \end{aligned}$$

Hence,

$$\begin{aligned}{} & {} {\overline{F}}_{\tau _2}(t)-{\overline{F}}_{\tau _1}(t)\\{} & {} \quad =\Big [{\mathbb {P}}( X_k\#Y_1\le t){\mathbb {P}}( X_l\#Y_2\le t)-{\mathbb {P}}( X_k\#Y_2\le t) {\mathbb {P}}( X_l\#Y_1\le t) \Big ]\\{} & {} \qquad \times {\mathbb {P}}(\underset{{\mathcal {C}} \in {\mathcal {S}}_k }{\min }\underset{i \in {\mathcal {C}}, i \ne k,l}{\max }X_i \le t, \underset{{\mathcal {C}} \in {\mathcal {S}}_l\backslash {\mathcal {S}}_k }{\min }\underset{i \in {\mathcal {C}}, i \ne l}{\max }X_i> t, \underset{{\mathcal {C}} \in {\mathcal {S}}\backslash {\mathcal {S}}_l }{\min }\underset{i \in {\mathcal {C}}}{\max }X_i> t)\\{} & {} \qquad +\Big [{\mathbb {P}}(X_l\#Y_2\le t)-{\mathbb {P}}(X_l\#Y_1\le t) \Big ] {\mathbb {P}}( \underset{{\mathcal {C}} \in {\mathcal {S}}_l \backslash {\mathcal {S}}_k }{\min }\underset{i \in {\mathcal {C}}, i \ne l}{\max }X_i \le t, \underset{{\mathcal {C}} \in {\mathcal {S}}\backslash {\mathcal {S}}_l }{\min }\underset{i \in {\mathcal {C}} }{\max }X_i> t)\\{} & {} \quad =:H_{1}(t) {\mathbb {P}}(\underset{{\mathcal {C}} \in {\mathcal {S}}_k }{\min }\underset{i \in {\mathcal {C}}, i \ne k,l}{\max }X_i \le t, \underset{{\mathcal {C}} \in {\mathcal {S}}_l\backslash {\mathcal {S}}_k }{\min }\underset{i \in {\mathcal {C}}, i \ne l}{\max }X_i> t, \underset{{\mathcal {C}} \in {\mathcal {S}}\backslash {\mathcal {S}}_l }{\min }\underset{i \in {\mathcal {C}}}{\max }X_i> t)\\{} & {} \qquad +H_{2}(t){\mathbb {P}}( \underset{{\mathcal {C}} \in {\mathcal {S}}_l \backslash {\mathcal {S}}_k }{\min }\underset{i \in {\mathcal {C}}, i \ne l}{\max }X_i \le t, \underset{{\mathcal {C}} \in {\mathcal {S}}\backslash {\mathcal {S}}_l }{\min }\underset{i \in {\mathcal {C}} }{\max }X_i > t), \end{aligned}$$

where

$$\begin{aligned} H_{1}(t)= & {} {\mathbb {P}}( X_k\#Y_1\le t){\mathbb {P}}( X_l\#Y_2\le t)\\{} & {} -{\mathbb {P}}( X_k\#Y_2\le t){\mathbb {P}}( X_l\#Y_1\le t),\\ H_{2}(t)= & {} {\mathbb {P}}(X_l\#Y_2\le t)-{\mathbb {P}}(X_l\#Y_1\le t). \end{aligned}$$

On the one hand,

$$\begin{aligned} F_{X_k\#Y_1}(t) F_{X_l\#Y_2}(t)\ge F_{X_k\#Y_2}(t) F_{X_l\#Y_1}(t), \end{aligned}$$

implies \(H_{1}(t)\ge 0\). On the other hand, \(Y_1 \ge _{hr} Y_2\) implies

$$\begin{aligned} \frac{\overline{G}_1(t) }{\overline{G}_1(u)} -\frac{\overline{G}_2(t)}{\overline{G}_2(u)}\ge 0, \text { for all } u \le t, \end{aligned}$$

hence, we have

$$\begin{aligned} H_{2}(t)= & {} {\mathbb {P}}(X_l\#Y_2\le t)-{\mathbb {P}}(X_l\#Y_1\le t) = F_l(t)\\{} & {} -\overline{G}_2(t)\int _0^t\frac{f_l(u)}{\overline{G}_2(u)}\textrm{d}u -\Big ( F_l(t)-\overline{G}_1(t)\int _0^t\frac{f_l(u)}{\overline{G}_1(u)}\textrm{d}u \Big ) \\= & {} \int _0^t \bigg ( \frac{\overline{G}_1(t)f_l(u)}{\overline{G}_1(u)} -\frac{\overline{G}_2(t)f_l(u)}{\overline{G}_2(u)} \bigg )\textrm{d}u \ge 0. \end{aligned}$$

Therefore, it follows that \(H_{1}(t)\) and \(H_{2}(t)\) are non-negative, which means that \({\bar{F}}_{\tau _1}(t)\le \bar{F}_{\tau _2}(t)\), for all \(t \in {\mathbb {R}}_+\), the desired result is proved. \(\square \)

1.3 Appendix A.3: Proof of Theorem 3

Proof

We denote the survival functions of \(\tau (X_k\#Y_1, X_l\#Y_2, \varvec{X}^{(k,l)})\) and \(\tau (X_k\#Y_2, X_l\#Y_1, \varvec{X}^{(k,l)})\) by \({\overline{F}}_{\tau _1}\) and \({\overline{F}}_{\tau _2}\), respectively. Note that

$$\begin{aligned} {\overline{F}}_{\tau _1}(t)= & {} {\overline{F}}_{X_k\#Y_1}(t) \overline{F}_{X_l\#Y_2}(t) [{\mathbb {P}} (B_{kl})-{\mathbb {P}} (B_{kl} B_{k\bar{l}})-{\mathbb {P}} (B_{kl} B_{{\bar{k}}l})\\{} & {} -{\mathbb {P}} (B_{kl} A_{{\bar{k}}{\bar{l}}}) -{\mathbb {P}} (B_{k {\bar{l}}} A_{{\bar{k}} l})\\{} & {} +{\mathbb {P}} (B_{kl} B_{k{\bar{l}}} B_{{\bar{k}}l})+ {\mathbb {P}} (B_{kl} B_{{\bar{k}} l} B_{{\bar{k}} {\bar{l}}}) + {\mathbb {P}} (B_{kl} B_{ k {\bar{l}}} A_{{\bar{k}}{\bar{l}}})\\{} & {} + {\mathbb {P}} (B_{k {\bar{l}}} B_{{\bar{k}} l} A_{{\bar{k}} {\bar{l}}}) - {\mathbb {P}} (B_{kl} B_{ k {\bar{l}}} B_{{\bar{k}} l} A_{{\bar{k}}{\bar{l}}})]\\{} & {} + {\overline{F}}_{X_k\#Y_1}(t) [{\mathbb {P}} (B_{k\bar{l}})-{\mathbb {P}} (B_{k {\bar{l}}} B_{{\bar{k}} {\bar{l}}})] + \overline{F}_{X_l\#Y_2}(t)[{\mathbb {P}} (B_{{\bar{k}} l})-{\mathbb {P}} (B_{{\bar{k}} l} B_{{\bar{k}} {\bar{l}}}) ] + {\mathbb {P}} (A_{{\bar{k}}{\bar{l}}}). \end{aligned}$$

Similarly,

$$\begin{aligned} {\overline{F}}_{\tau _2}(t)= & {} {\overline{F}}_{X_k\#Y_2}(t) \overline{F}_{X_l\#Y_1}(t) [{\mathbb {P}} (B_{kl})-{\mathbb {P}} (B_{kl} B_{k\bar{l}})-{\mathbb {P}} (B_{kl} B_{{\bar{k}}l})-{\mathbb {P}} (B_{kl} A_{\bar{k}{\bar{l}}}) -{\mathbb {P}} (B_{k {\bar{l}}} A_{{\bar{k}} l})\\{} & {} +{\mathbb {P}} (B_{kl} B_{k{\bar{l}}} B_{{\bar{k}}l})+ {\mathbb {P}} (B_{kl} B_{{\bar{k}} l} B_{{\bar{k}} {\bar{l}}}) + {\mathbb {P}} (B_{kl} B_{ k {\bar{l}}} A_{{\bar{k}}{\bar{l}}}) \\{} & {} + {\mathbb {P}} (B_{k {\bar{l}}} B_{{\bar{k}} l} A_{{\bar{k}} {\bar{l}}}) - {\mathbb {P}} (B_{kl} B_{ k {\bar{l}}} B_{{\bar{k}} l} A_{{\bar{k}}\bar{l}})]\\{} & {} + {\overline{F}}_{X_k\#Y_2}(t) [{\mathbb {P}} (B_{k\bar{l}})-{\mathbb {P}} (B_{k {\bar{l}}} B_{{\bar{k}} {\bar{l}}})] + {\overline{F}}_{X_l\#Y_1}(t)[{\mathbb {P}} (B_{{\bar{k}} l})-{\mathbb {P}} (B_{{\bar{k}} l} B_{{\bar{k}} {\bar{l}}}) ] + {\mathbb {P}} (A_{{\bar{k}}\bar{l}}) \end{aligned}$$

We need to show that \({\overline{F}}_{\tau _1}(t)\le \overline{F}_{\tau _2}(t)\), for all \(t\in {\mathbb {R}}_+\). Note that

$$\begin{aligned}{} & {} {\overline{F}}_{\tau _1}(t)-{\overline{F}}_{\tau _2}(t)\\{} & {} \quad = [{\overline{F}}_{X_k\#Y_1}(t) {\overline{F}}_{X_l\#Y_2}(t) -{\overline{F}}_{X_k\#Y_2}(t) {\overline{F}}_{X_l\#Y_1}(t)] [{\mathbb {P}} (B_{kl})-{\mathbb {P}} (B_{kl} B_{k{\bar{l}}})\\{} & {} \qquad -{\mathbb {P}} (B_{kl} B_{{\bar{k}}l})-{\mathbb {P}} (B_{kl} A_{{\bar{k}}{\bar{l}}}) -{\mathbb {P}} (B_{k {\bar{l}}} A_{{\bar{k}} l}) +{\mathbb {P}} (B_{kl} B_{k{\bar{l}}} B_{{\bar{k}}l})+ {\mathbb {P}} (B_{kl} B_{{\bar{k}} l} B_{{\bar{k}} {\bar{l}}})\\{} & {} \qquad + {\mathbb {P}} (B_{kl} B_{ k {\bar{l}}} A_{{\bar{k}}{\bar{l}}}) + {\mathbb {P}} (B_{k {\bar{l}}} B_{{\bar{k}} l} A_{{\bar{k}} {\bar{l}}}) - {\mathbb {P}} (B_{kl} B_{ k {\bar{l}}} B_{{\bar{k}} l} A_{{\bar{k}}{\bar{l}}})]\\{} & {} \qquad + [{\overline{F}}_{X_k\#Y_1}(t)-{\overline{F}}_{X_k\#Y_2}(t)] [{\mathbb {P}} (B_{k{\bar{l}}}) -{\mathbb {P}} (B_{k {\bar{l}}} B_{{\bar{k}} {\bar{l}}})]\\{} & {} \qquad + [{\overline{F}}_{X_l\#Y_2}(t)-{\overline{F}}_{X_l\#Y_1}(t)][{\mathbb {P}} (B_{{\bar{k}} l}) -{\mathbb {P}} (B_{{\bar{k}} l} A_{{\bar{k}} {\bar{l}}}) ] \\{} & {} \quad =:J_{1}(t) +J_{2}(t), \end{aligned}$$

where

$$\begin{aligned} J_{1}(t)= & {} [{\overline{F}}_{X_k\#Y_1}(t) {\overline{F}}_{X_l\#Y_2}(t)-{\overline{F}}_{X_k\#Y_2}(t) {\overline{F}}_{X_l\#Y_1}(t)] [{\mathbb {P}} (B_{kl})-{\mathbb {P}} (B_{kl} B_{k{\bar{l}}})\\{} & {} -{\mathbb {P}} (B_{kl} B_{{\bar{k}}l})-{\mathbb {P}} (B_{kl} A_{{\bar{k}}{\bar{l}}}) -{\mathbb {P}} (B_{k {\bar{l}}} A_{{\bar{k}} l}) +{\mathbb {P}} (B_{kl} B_{k{\bar{l}}} B_{{\bar{k}}l}) + {\mathbb {P}} (B_{kl} B_{{\bar{k}} l} B_{{\bar{k}} {\bar{l}}})\\{} & {} + {\mathbb {P}} (B_{kl} B_{ k {\bar{l}}} A_{{\bar{k}}{\bar{l}}}) + {\mathbb {P}} (B_{k {\bar{l}}} B_{{\bar{k}} l} A_{{\bar{k}} {\bar{l}}}) - {\mathbb {P}} (B_{kl} B_{ k {\bar{l}}} B_{{\bar{k}} l} A_{{\bar{k}}{\bar{l}}})],\\ J_{2}(t)= & {} [{\overline{F}}_{X_k\#Y_1}(t)-{\overline{F}}_{X_k\#Y_2}(t)] [{\mathbb {P}} (B_{k{\bar{l}}}) -{\mathbb {P}} (B_{k {\bar{l}}} B_{{\bar{k}} {\bar{l}}})] \\{} & {} \quad + [{\overline{F}}_{X_l\#Y_2}(t) -{\overline{F}}_{X_l\#Y_1}(t)][{\mathbb {P}} (B_{{\bar{k}} l})-{\mathbb {P}} (B_{{\bar{k}} l} A_{{\bar{k}} {\bar{l}}}) ]. \end{aligned}$$

On the one hand, according to Lemma 4, \(X_k \le _{lr} X_l\) and \(Y_1 \ge _{hr} Y_2\) imply

$$\begin{aligned} {\overline{F}}_{X_k\#Y_1}(t) {\overline{F}}_{X_l\#Y_2}(t)\ge {\overline{F}}_{X_k\#Y_2}(t) {\overline{F}}_{X_l\#Y_1}(t), \end{aligned}$$

and

$$\begin{aligned}{} & {} \partial _{k,l}h({\overline{F}}_1(t), \dots , {\overline{F}}_n(t))\\{} & {} \quad ={\mathbb {P}} (B_{kl})-{\mathbb {P}} (B_{kl} B_{k{\bar{l}}}) -{\mathbb {P}} (B_{kl} B_{{\bar{k}}l})-{\mathbb {P}} (B_{kl} A_{{\bar{k}}{\bar{l}}}) -{\mathbb {P}} (B_{k {\bar{l}}} A_{{\bar{k}} l}) +{\mathbb {P}} (B_{kl} B_{k{\bar{l}}} B_{{\bar{k}}l})\\{} & {} \qquad + {\mathbb {P}} (B_{kl} B_{{\bar{k}} l} B_{{\bar{k}} {\bar{l}}})+ {\mathbb {P}} (B_{kl} B_{ k {\bar{l}}} A_{{\bar{k}}{\bar{l}}}) + {\mathbb {P}} (B_{k {\bar{l}}} B_{{\bar{k}} l} A_{{\bar{k}} {\bar{l}}}) - {\mathbb {P}} (B_{kl} B_{ k {\bar{l}}} B_{{\bar{k}} l} A_{{\bar{k}}{\bar{l}}}) \ge 0, \end{aligned}$$

which implies that \(J_{1}(t)\ge 0\). On the other hand,

$$\begin{aligned} J_{2}(t)= & {} [{\overline{F}}_{X_k\#Y_1}(t)-{\overline{F}}_{X_k\#Y_2}(t)] [{\mathbb {P}} (B_{k{\bar{l}}})-{\mathbb {P}} (B_{k {\bar{l}}} B_{{\bar{k}} {\bar{l}}})] \\{} & {} + [{\overline{F}}_{X_l\#Y_2}(t)-{\overline{F}}_{X_l\#Y_1}(t)][{\mathbb {P}} (B_{{\bar{k}} l}) -{\mathbb {P}} (B_{{\bar{k}} l} A_{{\bar{k}} {\bar{l}}}) ] \\= & {} [{\overline{F}}_{X_k\#Y_1}(t)-{\overline{F}}_{X_k\#Y_2}(t)+{\overline{F}}_{X_l\#Y_2}(t)-{\overline{F}}_{X_l\#Y_1}(t)] [{\mathbb {P}} (B_{k{\bar{l}}})-{\mathbb {P}} (B_{k {\bar{l}}} B_{{\bar{k}} {\bar{l}}})]\\{} & {} +[{\overline{F}}_{X_l\#Y_2}(t)-{\overline{F}}_{X_l\#Y_1}(t)] [-{\mathbb {P}} (B_{k{\bar{l}}}) +{\mathbb {P}} (B_{k {\bar{l}}} B_{{\bar{k}} {\bar{l}}})+{\mathbb {P}} (B_{{\bar{k}} l})-{\mathbb {P}} (B_{{\bar{k}} l} A_{{\bar{k}} {\bar{l}}}) ]\\=: & {} J_{3}(t) +J_{4}(t), \end{aligned}$$

where

$$\begin{aligned} J_{3}(t)= & {} {\overline{F}}_{X_k\#Y_1}(t)-{\overline{F}}_{X_k\#Y_2}(t)+{\overline{F}}_{X_l\#Y_2}(t) -{\overline{F}}_{X_l\#Y_1}(t),\\ J_{4}(t)= & {} [{\overline{F}}_{X_l\#Y_2}(t)-{\overline{F}}_{X_l\#Y_1}(t)] [-{\mathbb {P}} (B_{k{\bar{l}}})+{\mathbb {P}} (B_{k {\bar{l}}} B_{{\bar{k}} {\bar{l}}})+{\mathbb {P}} (B_{{\bar{k}} l}) -{\mathbb {P}} (B_{{\bar{k}} l} A_{{\bar{k}} {\bar{l}}}) ]. \end{aligned}$$

Condition (iii) implies that \(J_{3}(t) \ge 0\), for all \(t \in {\mathbb {R}}_+\). Meanwhile, \(Y_1 \ge _{hr} Y_2\) implies

$$\begin{aligned}{} & {} {\mathbb {P}}(X_l\#Y_2>t)-{\mathbb {P}}(X_l\#Y_1>t) = \overline{F}_l(t)\\{} & {} \qquad +\overline{G}_2(t)\int _0^t\frac{f_l(u)}{\overline{G}_2(u)}\textrm{d}u-\Big (\overline{F}_l(t) +\overline{G}_1(t)\int _0^t\frac{f_l(u)}{\overline{G}_1(u)}\textrm{d}u \Big ) \\{} & {} \quad =\int _0^t \bigg (\frac{\overline{G}_2(t)f_l(u)}{\overline{G}_2(u)}-\frac{{\overline{G}}_1(t)f_l(u)}{{\overline{G}}_1(u)}\bigg ) \textrm{d}u \le 0. \end{aligned}$$

Note that \(-{\mathbb {P}} (B_{k{\bar{l}}})+{\mathbb {P}} (B_{k {\bar{l}}} B_{{\bar{k}} {\bar{l}}}) +{\mathbb {P}} (B_{{\bar{k}} l})-{\mathbb {P}} (B_{{\bar{k}} l} A_{{\bar{k}} {\bar{l}}})\le 0\), and thus \(J_{4}(t) \ge 0\). Therefore, it follows that \(J_{1}(t)\), \(J_{3}(t)\) and \(J_{4}(t)\) are non-negative, which means that \({\overline{F}}_{\tau _1}(t)\ \ge {\overline{F}}_{\tau _2}(t)\), for all \(t \in {\mathbb {R}}_+\). Hence, the desired result is proved. \(\square \)

1.4 Appendix A.4: Proof of Theorem 4

Proof

The survival functions of \(\tau (X_k\#Y_1, X_l\#Y_2, \varvec{X}^{(k,l)})\) and \(\tau (X_k\#Y_2, X_l\#Y_1, \varvec{X}^{(k,l)})\) denote as \( F_{\tau _1}\) and \( F_{\tau _2}\), respectively. Note that

$$\begin{aligned} F_{\tau _1}(t)= & {} F_{X_k\#Y_1}(t) F_{X_l\#Y_2}(t) [{\mathbb {P}} ({\tilde{B}}_{kl}) -{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{k{\bar{l}}})\\{} & {} \quad -{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{{\bar{k}}l}) -{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{A}}_{{\bar{k}}{\bar{l}}}) -{\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{A}}_{{\bar{k}} l})\\{} & {} survivalfun +{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{k{\bar{l}}} {\tilde{B}}_{{\bar{k}}l}) + {\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{{\bar{k}} l} {\tilde{B}}_{{\bar{k}} {\bar{l}}}) + {\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{ k {\bar{l}}} {\tilde{A}}_{{\bar{k}}{\bar{l}}})\\{} & {} \quad + {\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{B}}_{{\bar{k}} l} {\tilde{A}}_{{\bar{k}} {\bar{l}}}) - {\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{ k {\bar{l}}} {\tilde{B}}_{{\bar{k}} l} {\tilde{A}}_{{\bar{k}}{\bar{l}}})]\\{} & {} survivalfun + F_{X_k\#Y_1}(t) [{\mathbb {P}} ({\tilde{B}}_{k{\bar{l}}})-{\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{B}}_{{\bar{k}} {\bar{l}}})] \\{} & {} \quad + F_{X_l\#Y_2}(t)[{\mathbb {P}} ({\tilde{B}}_{{\bar{k}} l}) -{\mathbb {P}} ({\tilde{B}}_{{\bar{k}} l} {\tilde{B}}_{{\bar{k}} {\bar{l}}}) ] + {\mathbb {P}} ({\tilde{A}}_{{\bar{k}}{\bar{l}}}) \end{aligned}$$

Similarly,

$$\begin{aligned} F_{\tau _2}(t)= & {} F_{X_k\#Y_2}(t) F_{X_l\#Y_1}(t) [{\mathbb {P}} ({\tilde{B}}_{kl}) -{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{k{\bar{l}}})-{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{{\bar{k}}l})\\{} & {} -{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{A}}_{{\bar{k}}{\bar{l}}}) -{\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{A}}_{{\bar{k}} l})\\{} & {} +{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{k{\bar{l}}} {\tilde{B}}_{{\bar{k}}l}) + {\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{{\bar{k}} l} {\tilde{B}}_{{\bar{k}} {\bar{l}}}) + {\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{ k {\bar{l}}} {\tilde{A}}_{{\bar{k}}{\bar{l}}})\\{} & {} + {\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{B}}_{{\bar{k}} l} {\tilde{A}}_{{\bar{k}} {\bar{l}}}) - {\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{ k {\bar{l}}} {\tilde{B}}_{{\bar{k}} l} {\tilde{A}}_{{\bar{k}}{\bar{l}}})]\\{} & {} + F_{X_k\#Y_2}(t) [{\mathbb {P}} ({\tilde{B}}_{k{\bar{l}}})-{\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{B}}_{{\bar{k}} {\bar{l}}})]\\{} & {} + F_{X_l\#Y_1}(t)[{\mathbb {P}} ({\tilde{B}}_{{\bar{k}} l})-{\mathbb {P}} ({\tilde{B}}_{{\bar{k}} l} {\tilde{B}}_{{\bar{k}} {\bar{l}}}) ] + {\mathbb {P}} ({\tilde{A}}_{{\bar{k}}{\bar{l}}}) \end{aligned}$$

In order to obtain the desired result, it is sufficient to show that \( F_{\tau _1}(t)\le F_{\tau _2}(t)\), hence, we have

$$\begin{aligned} F_{\tau _1}(t)- F_{\tau _2}(t)= & {} [ F_{X_k\#Y_1}(t) F_{X_l\#Y_2}(t)- F_{X_k\#Y_2}(t) F_{X_l\#Y_1}(t)] [{\mathbb {P}} ({\tilde{B}}_{kl}) -{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{k{\bar{l}}})\\{} & {} -{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{{\bar{k}}l})-{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{A}}_{{\bar{k}}{\bar{l}}}) -{\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{A}}_{{\bar{k}} l}) \\{} & {} +{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{k{\bar{l}}} {\tilde{B}}_{{\bar{k}}l})+ {\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{{\bar{k}} l} {\tilde{B}}_{{\bar{k}} {\bar{l}}})\\{} & {} + {\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{ k {\bar{l}}} {\tilde{A}}_{{\bar{k}}{\bar{l}}}) + {\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{B}}_{{\bar{k}} l} {\tilde{A}}_{{\bar{k}} {\bar{l}}}) - {\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{ k {\bar{l}}} {\tilde{B}}_{{\bar{k}} l} {\tilde{A}}_{{\bar{k}}{\bar{l}}})]\\{} & {} + [ F_{X_k\#Y_1}(t)- F_{X_k\#Y_2}(t)] [{\mathbb {P}} ({\tilde{B}}_{k{\bar{l}}}) -{\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{B}}_{{\bar{k}} {\bar{l}}})] + [ F_{X_l\#Y_2}(t)\\{} & {} - F_{X_l\#Y_1}(t)][{\mathbb {P}} ({\tilde{B}}_{{\bar{k}} l})-{\mathbb {P}} ({\tilde{B}}_{{\bar{k}} l} {\tilde{A}}_{{\bar{k}} {\bar{l}}}) ] \\=: & {} L_{1}(t) +L_{2}(t), \end{aligned}$$

where

$$\begin{aligned} L_{1}(t)= & {} [ F_{X_k\#Y_1}(t) F_{X_l\#Y_2}(t)- F_{X_k\#Y_2}(t) F_{X_l\#Y_1}(t)] [{\mathbb {P}} ({\tilde{B}}_{kl}) -{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{k{\bar{l}}})\\{} & {} -{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{{\bar{k}}l})-{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{A}}_{{\bar{k}}{\bar{l}}}) -{\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{A}}_{{\bar{k}} l}) \\{} & {} \quad +{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{k{\bar{l}}} {\tilde{B}}_{{\bar{k}}l})+ {\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{{\bar{k}} l} {\tilde{B}}_{{\bar{k}} {\bar{l}}})\\{} & {} + {\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{ k {\bar{l}}} {\tilde{A}}_{{\bar{k}}{\bar{l}}}) + {\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{B}}_{{\bar{k}} l} {\tilde{A}}_{{\bar{k}} {\bar{l}}}) - {\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{ k {\bar{l}}} {\tilde{B}}_{{\bar{k}} l} {\tilde{A}}_{{\bar{k}}{\bar{l}}})],\\ L_{2}(t)= & {} [ F_{X_k\#Y_1}(t)- F_{X_k\#Y_2}(t)] [{\mathbb {P}} ({\tilde{B}}_{k{\bar{l}}}) -{\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{B}}_{{\bar{k}} {\bar{l}}})] \\{} & {} \quad + [ F_{X_l\#Y_2}(t)- F_{X_l\#Y_1}(t)] [{\mathbb {P}} ({\tilde{B}}_{{\bar{k}} l})-{\mathbb {P}} ({\tilde{B}}_{{\bar{k}} l} {\tilde{A}}_{{\bar{k}} {\bar{l}}}) ]. \end{aligned}$$

On the one hand, according to conditions (i) and (ii), we have

$$\begin{aligned}{} & {} -\partial _{k,l}{\tilde{h}}(F_1(t), \dots , F_n(t))\\{} & {} \quad ={\mathbb {P}} ({\tilde{B}}_{kl})-{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{k{\bar{l}}}) -{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{{\bar{k}}l})-{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{A}}_{{\bar{k}}{\bar{l}}}) -{\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{A}}_{{\bar{k}} l}) +{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{k{\bar{l}}} {\tilde{B}}_{{\bar{k}}l})\\{} & {} \qquad + {\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{{\bar{k}} l} {\tilde{B}}_{{\bar{k}} {\bar{l}}})+ {\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{ k {\bar{l}}} {\tilde{A}}_{{\bar{k}}{\bar{l}}}) + {\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{B}}_{{\bar{k}} l} {\tilde{A}}_{{\bar{k}} {\bar{l}}}) - {\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{ k {\bar{l}}} {\tilde{B}}_{{\bar{k}} l} {\tilde{A}}_{{\bar{k}}{\bar{l}}}) \le 0, \end{aligned}$$

Combining this inequality with condition (iii), we have \(L_{1}(t)\le 0\). On the other hand,

$$\begin{aligned} L_{2}(t)= & {} [ F_{X_k\#Y_1}(t)- F_{X_k\#Y_2}(t)+ F_{X_l\#Y_2}(t)- F_{X_l\#Y_1}(t)] [{\mathbb {P}} ({\tilde{B}}_{k{\bar{l}}})-{\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{B}}_{{\bar{k}} {\bar{l}}})]\\{} & {} +[ F_{X_l\#Y_2}(t)- F_{X_l\#Y_1}(t)] [-{\mathbb {P}} ({\tilde{B}}_{k{\bar{l}}})+{\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{B}}_{{\bar{k}} {\bar{l}}})+{\mathbb {P}} ({\tilde{B}}_{{\bar{k}} l})-{\mathbb {P}} ({\tilde{B}}_{{\bar{k}} l} {\tilde{A}}_{{\bar{k}} \bar{l}}) ]\\=: & {} L_{3}(t) +L_{4}(t), \end{aligned}$$

where

$$\begin{aligned} L_{3}(t)= & {} [ F_{X_k\#Y_1}(t)- F_{X_k\#Y_2}(t)+ F_{X_l\#Y_2}(t)- F_{X_l\#Y_1}(t)] [{\mathbb {P}} ({\tilde{B}}_{k{\bar{l}}})-{\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{B}}_{{\bar{k}} {\bar{l}}})] \\ L_{4}(t)= & {} [{\overline{F}}_{X_l\#Y_1}(t)- {\overline{F}}_{X_l\#Y_2}(t) ] [-{\mathbb {P}} ({\tilde{B}}_{k{\bar{l}}})+{\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{B}}_{{\bar{k}} {\bar{l}}})+{\mathbb {P}} ({\tilde{B}}_{\bar{k} l})-{\mathbb {P}} ({\tilde{B}}_{{\bar{k}} l} {\tilde{A}}_{{\bar{k}} \bar{l}}) ]. \end{aligned}$$

Observe that

$$\begin{aligned} {\overline{F}}_{X_k\#Y_1}(t)-{\overline{F}}_{X_k\#Y_2}(t)\ge \overline{F}_{X_l\#Y_1}(t) -{\overline{F}}_{X_l\#Y_2}(t) \end{aligned}$$

means

$$\begin{aligned} F_{X_k\#Y_1}(t)- F_{X_k\#Y_2}(t)+ F_{X_l\#Y_2}(t)- F_{X_l\#Y_1}(t) \le 0, \end{aligned}$$

hence, \(L_3(t)\le 0\). Meanwhile, \(Y_1 \ge _{hr} Y_2\) implies \({\overline{F}}_{X_l\#Y_1}(t)- {\overline{F}}_{X_l\#Y_2}(t) \ge 0.\) Combining the above inequality with \(-{\mathbb {P}} ({\tilde{B}}_{k{\bar{l}}})+{\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{B}}_{{\bar{k}} {\bar{l}}})+{\mathbb {P}} ({\tilde{B}}_{{\bar{k}} l})-{\mathbb {P}} ({\tilde{B}}_{{\bar{k}} l} {\tilde{A}}_{{\bar{k}} \bar{l}})\le 0\), hence we have \(L_{4}(t) \le 0\).

Therefore, it follows that \(L_{1}(t)\), \(L_{3}(t)\) and \(L_{4}(t)\) are non-positive, which means that \(F_{\tau _1}(t)\le F_{\tau _2}(t)\), for all \(t \in {\mathbb {R}}_+\), the desired result is proved. \(\square \)

1.5 Appendix A.5: Proof of Theorem 5

Proof

Let \(F_{\tau _1}\) and \(F_{\tau _2}\) be the distributions of \(\tau (X_k\#^{r_k}X_k, X_l\#^{r_l}X_l, \varvec{X}^{(k,l)})\) and \(\tau (X_k\#^{r_k^*}X_k, X_l\#^{r_l^*}X_l,\) \( \varvec{X}^{(k,l)})\), respectively. It suffices to prove that \(F_{\tau _1}(t) \ge F_{\tau _2}(t)\), for all \(t \in {\mathbb {R}}_+\). For the allocation policy \((r_k,r_l)\), the system’s lifetime can be written by

$$\begin{aligned}{} & {} \tau (X_k\#^{r_k}X_k, X_l\#^{r_l}X_l, \varvec{X}^{(k,l)})\\{} & {} \quad =\max \Big \{\min \{X_k\#^{r_k}X_k, X_l\#^{r_l}X_l, \underset{{\mathcal {P}}\in {\mathcal {A}}_k}{\max }\underset{i \in {\mathcal {P}}, i \ne k,l}{\min }X_i\}, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}}{\min }X_i \Big \}. \end{aligned}$$

Then, it can be obtained that

$$\begin{aligned} F_{\tau _1}(t) =[1- {\mathbb {P}}(X_k\#^{r_k}X_k>t) {\mathbb {P}}(X_l\#^{r_l}X_l>t){\mathbb {P}}(\underset{{\mathcal {P}}\in {\mathcal {A}}_k}{\max }\underset{i \in {\mathcal {P}}, i \ne k,l}{\min }X_i > t)] {\mathbb {P}}(\underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}}{\min }X_i \le t). \end{aligned}$$

Similar, we have

$$\begin{aligned} F_{\tau _2}(t) =[1- {\mathbb {P}}(X_k\#^{r_k^*}X_k>t) {\mathbb {P}}(X_l\#^{r_l^*}X_l>t) {\mathbb {P}}(\underset{{\mathcal {P}}\in {\mathcal {A}}_k}{\max }\underset{i \in {\mathcal {P}}, i \ne k,l}{\min }X_i > t)] {\mathbb {P}}(\underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}}{\min }X_i \le t). \end{aligned}$$

According to Corollary 4.3 of Zhang and Zhao (2019), the condition \((r_k, r_l) \overset{\textrm{m}}{\succeq }\ (r_k^*, r_l^*)\) implies that

$$\begin{aligned} F_{\tau _1}(t)-F_{\tau _2}(t) \overset{\textrm{sign}}{=} {\mathbb {P}}(X_k\#^{r_k^*}X_k>t) {\mathbb {P}}(X_l\#^{r_l^*}X_l>t) -{\mathbb {P}}(X_k\#^{r_k}X_k>t) {\mathbb {P}}(X_l\#^{r_l}X_l>t) \ge 0, \end{aligned}$$

which completes the proof. \(\square \)

1.6 Appendix A.6: Proof of Theorem 7

Proof

The distribution function of \(\tau (X_k\#^{r_k}X_k, X_l\#^{r_l}X_l, \varvec{X}^{(k,l)})\) can be written as

$$\begin{aligned} F_{\tau _1}(t)= & {} {\mathbb {P}}(\underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}}}{\min }X_i \le t)-{\mathbb {P}}(X_k\#^{r_k}X_k> t){\mathbb {P}}( X_l\#^{r_l}X_l> t)\\{} & {} \times {\mathbb {P}}(\underset{{\mathcal {P}} \in {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne k,l}{\min }X_i> t, \underset{{\mathcal {P}} \in {\mathcal {A}}_l\backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i \le t, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}}}{\min }X_i \le t)\\{} & {} -{\mathbb {P}}( X_l\#^{r_l}X_l> t) {\mathbb {P}}( \underset{{\mathcal {P}} \in {\mathcal {A}}_l \backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i > t, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}} }{\min }X_i \le t). \end{aligned}$$

Similarly, the distribution function of \(\tau (X_k\#^{r_k^*}X_k, X_l\#^{r_l^*}X_l, \varvec{X}^{(k,l)})\) is given by

$$\begin{aligned} F_{\tau _2}(t)= & {} {\mathbb {P}}\left( \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}}}{\min }X_i \le t\right) -{\mathbb {P}}(X_k\#^{r_k^*}X_k> t){\mathbb {P}}( X_l\#^{r_l^*}X_l> t)\\{} & {} \times {\mathbb {P}}\left( \underset{{\mathcal {P}} \in {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne k,l}{\min }X_i> t, \underset{{\mathcal {P}} \in {\mathcal {A}}_l\backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i \le t, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}}}{\min }X_i \le t\right) \\{} & {} -{\mathbb {P}}( X_l\#^{r_l^*}X_l> t) {\mathbb {P}} \left( \underset{{\mathcal {P}} \in {\mathcal {A}}_l \backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i > t, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}} }{\min }X_i \le t\right) . \end{aligned}$$

Hence, we have

$$\begin{aligned}{} & {} F_{\tau _1}(t)-F_{\tau _2}(t)\\ {}{} & {} \quad =\Big [{\mathbb {P}}(X_k\#^{r_k^*}X_k> t){\mathbb {P}}( X_l\#^{r_l^*}X_l> t) -{\mathbb {P}}(X_k\#^{r_k}X_k> t){\mathbb {P}}( X_l\#^{r_l}X_l> t) \Big ]\\{} & {} \qquad \times {\mathbb {P}}(\underset{{\mathcal {P}} \in {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne k,l}{\min }X_i> t, \underset{{\mathcal {P}} \in {\mathcal {A}}_l\backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i \le t, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}}}{\min }X_i \le t)\\{} & {} \qquad +\Big [{\mathbb {P}}( X_l\#^{r_l^*}X_l> t)-{\mathbb {P}}( X_l\#^{r_l}X_l> t) \Big ] {\mathbb {P}}( \underset{{\mathcal {P}} \in {\mathcal {A}}_l \backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i> t, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}} }{\min }X_i \le t)\\{} & {} \quad =: M_{1}(t) {\mathbb {P}}(\underset{{\mathcal {P}} \in {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne k,l}{\min }X_i> t, \underset{{\mathcal {P}} \in {\mathcal {A}}_l\backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i \le t, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}}}{\min }X_i \le t)\\{} & {} \qquad +M_{2}(t){\mathbb {P}}( \underset{{\mathcal {P}} \in {\mathcal {A}}_l \backslash {\mathcal {A}}_k }{\max }\underset{i \in {\mathcal {P}}, i \ne l}{\min }X_i > t, \underset{{\mathcal {P}} \in {\mathcal {A}}\backslash {\mathcal {A}}_l }{\max }\underset{i \in {\mathcal {P}} }{\min }X_i \le t). \end{aligned}$$

where

$$\begin{aligned} M_{1}(t)={\mathbb {P}}(X_k\#^{r_k^*}X_k> t){\mathbb {P}}( X_l\#^{r_l^*}X_l> t)-{\mathbb {P}}(X_k\#^{r_k}X_k> t){\mathbb {P}}( X_l\#^{r_l}X_l > t), \end{aligned}$$

and \(M_{2}(t)={\mathbb {P}}( X_l\#^{r_l^*}X_l> t)-{\mathbb {P}}( X_l\#^{r_l}X_l > t)\). On one hand, according to Corollary 4.3 of Zhang and Zhao (2019), \((r_k, r_l) \overset{\textrm{m}}{\succeq }\ (r_k^*, r_l^*)\) implies that \(M_{1}(t)\ge 0\) for all \(t\in {\mathbb {R}}_+\). On the other hand, \(r_l^* \ge r_l\) suggests that \(M_{2}(t)\ge 0\) for all \(t\in {\mathbb {R}}_+\). Hence, the proof is finished. \(\square \)

1.7 Appendix A.7: Proof of Theorem 9

Proof

Let \({\overline{F}}_{\tau _1}\) and \({\overline{F}}_{\tau _2}\) be the survival functions of \(\tau (X_k\#^{r_k}X_k, X_l\#^{r_l}X_l, \varvec{X}^{(k,l)})\) and \(\tau (X_k\#^{r_k^*}X_k, X_l\#^{r_l^*}X_l, \varvec{X}^{(k,l)}),\) respectively. Note that

$$\begin{aligned} {\overline{F}}_{\tau _1}(t)-{\overline{F}}_{\tau _2}(t)= & {} [{\mathbb {P}}(X_k\#^{r_k}X_k>t){\mathbb {P}}(X_l\#^{r_l}X_l>t)\\{} & {} -{\mathbb {P}}(X_k\#^{r_k^*}X_k>t) {\mathbb {P}}(X_l\#^{r_l^*}X_l>t)] [{\mathbb {P}} (B_{kl})\\{} & {} -{\mathbb {P}} (B_{kl} B_{k{\bar{l}}})-{\mathbb {P}} (B_{kl} B_{\bar{k}l})-{\mathbb {P}} (B_{kl} A_{{\bar{k}}{\bar{l}}}) -{\mathbb {P}} (B_{k \bar{l}} A_{{\bar{k}} l})\\{} & {} +{\mathbb {P}} (B_{kl} B_{k{\bar{l}}} B_{{\bar{k}}l})+ {\mathbb {P}} (B_{kl} B_{{\bar{k}} l} B_{{\bar{k}} {\bar{l}}})\\{} & {} + {\mathbb {P}} (B_{kl} B_{ k {\bar{l}}} A_{{\bar{k}}{\bar{l}}}) + {\mathbb {P}} (B_{k {\bar{l}}} B_{{\bar{k}} l} A_{{\bar{k}} {\bar{l}}}) - {\mathbb {P}} (B_{kl} B_{ k {\bar{l}}} B_{{\bar{k}} l} A_{{\bar{k}}{\bar{l}}})]\\{} & {} + [{\mathbb {P}}(X_k\#^{r_k}X_k>t)-{\mathbb {P}}(X_k\#^{r_k^*}X_k>t)] [{\mathbb {P}} (B_{k{\bar{l}}})-{\mathbb {P}} (B_{k {\bar{l}}} B_{{\bar{k}} {\bar{l}}})] \\{} & {} + [ {\mathbb {P}}(X_l\#^{r_l}X_l>t)-{\mathbb {P}}(X_l\#^{r_l^*}X_l >t)][{\mathbb {P}} (B_{{\bar{k}} l})-{\mathbb {P}} (B_{{\bar{k}} l} A_{\bar{k} {\bar{l}}}) ] \\=: & {} M_{1}(t) +M_{2}(t), \end{aligned}$$

where

$$\begin{aligned} M_{1}(t)= & {} [{\mathbb {P}}(X_k\#^{r_k}X_k>t){\mathbb {P}}(X_l\#^{r_l}X_l>t)-{\mathbb {P}}(X_k\#^{r_k^*}X_k>t) {\mathbb {P}}(X_l\#^{r_l^*}X_l>t)] [{\mathbb {P}} (B_{kl})\\{} & {} -{\mathbb {P}} (B_{kl} B_{k{\bar{l}}})-{\mathbb {P}} (B_{kl} B_{\bar{k}l})-{\mathbb {P}} (B_{kl} A_{{\bar{k}}{\bar{l}}}) -{\mathbb {P}} (B_{k \bar{l}} A_{{\bar{k}} l}) +{\mathbb {P}} (B_{kl} B_{k{\bar{l}}} B_{{\bar{k}}l})\\{} & {} + {\mathbb {P}} (B_{kl} B_{{\bar{k}} l} B_{{\bar{k}} {\bar{l}}}) + {\mathbb {P}} (B_{kl} B_{ k {\bar{l}}} A_{{\bar{k}}{\bar{l}}}) + {\mathbb {P}} (B_{k {\bar{l}}} B_{{\bar{k}} l} A_{{\bar{k}} {\bar{l}}}) - {\mathbb {P}} (B_{kl} B_{ k {\bar{l}}} B_{{\bar{k}} l} A_{{\bar{k}}{\bar{l}}})],\\ M_{2}(t)= & {} [{\mathbb {P}}(X_k\#^{r_k}X_k>t)-{\mathbb {P}}(X_k\#^{r_k^*}X_k>t)] [{\mathbb {P}} (B_{k{\bar{l}}})-{\mathbb {P}} (B_{k {\bar{l}}} B_{{\bar{k}} {\bar{l}}})] \\{} & {} + [ {\mathbb {P}}(X_l\#^{r_l}X_l>t)-{\mathbb {P}}(X_l\#^{r_l^*}X_l >t)][{\mathbb {P}} (B_{{\bar{k}} l})-{\mathbb {P}} (B_{{\bar{k}} l} A_{\bar{k} {\bar{l}}}) ]. \end{aligned}$$

On one hand, according to Corollary 4.3 of Zhang and Zhao (2019), \((r_k^*, r_l^*)\overset{\textrm{m}}{\preceq }\ (r_k, r_l) \) implies

$$\begin{aligned} {\mathbb {P}}(X_k\#^{r_k}X_k>t){\mathbb {P}}(X_l\#^{r_l}X_l>t)-{\mathbb {P}}(X_k\#^{r_k^*}X_k>t) {\mathbb {P}}(X_l\#^{r_l^*}X_l>t) \le 0. \end{aligned}$$

Then by applying condition (ii), we have \(M_{1}(t)\le 0\). On the other hand,

$$\begin{aligned} M_{2}(t)= & {} [{\mathbb {P}}(X_k\#^{r_k}X_k>t)-{\mathbb {P}}(X_k\#^{r_k^*}X_k>t)] [{\mathbb {P}} (B_{k{\bar{l}}})-{\mathbb {P}} (B_{k {\bar{l}}} B_{{\bar{k}} {\bar{l}}})\\{} & {} -{\mathbb {P}} (B_{{\bar{k}} l})+{\mathbb {P}} (B_{{\bar{k}} l} A_{{\bar{k}} {\bar{l}}}) ] \\{} & {} +[{\mathbb {P}}(X_k\#^{r_k}X_k>t)-{\mathbb {P}}(X_k\#^{r_k^*}X_k>t)\\{} & {} +[{\mathbb {P}}(X_l\#^{r_l}X_l>t)-{\mathbb {P}}(X_l\#^{r_l^*}X_l >t)] [{\mathbb {P}} (B_{k{\bar{l}}})-{\mathbb {P}} (B_{k {\bar{l}}} B_{{\bar{k}} {\bar{l}}})]\\=: & {} M_{3}(t) +M_{4}(t), \end{aligned}$$

where

$$\begin{aligned} M_{3}(t)= & {} [{\mathbb {P}}(X_k\#^{r_k}X_k>t)-{\mathbb {P}}(X_k\#^{r_k^*}X_k>t)] [{\mathbb {P}} (B_{k{\bar{l}}})-{\mathbb {P}} (B_{k {\bar{l}}} B_{{\bar{k}} {\bar{l}}})\\{} & {} -{\mathbb {P}} (B_{{\bar{k}} l})+{\mathbb {P}} (B_{{\bar{k}} l} A_{{\bar{k}} {\bar{l}}}) ],\\ M_{4}(t)= & {} [{\mathbb {P}}(X_k\#^{r_k}X_k>t)-{\mathbb {P}}(X_k\#^{r_k^*}X_k>t)+ {\mathbb {P}}(X_l\#^{r_l}X_l>t)\\{} & {} -{\mathbb {P}}(X_l\#^{r_l^*}X_l >t)] [{\mathbb {P}} (B_{k{\bar{l}}})-{\mathbb {P}} (B_{k {\bar{l}}} B_{{\bar{k}} {\bar{l}}})]. \end{aligned}$$

Due to the majorization order, it can be obtained that \(r_k\le r_k^*\), which further implies

$$\begin{aligned} {\mathbb {P}}(X_k\#^{r_k}X_k>t)-{\mathbb {P}}(X_k\#^{r_k^*}X_k>t) \le 0. \end{aligned}$$

Combining this inequality and condition (ii), we have \(M_{3}(t)\le 0\). Besides, condition (iii) implies

$$\begin{aligned} {\mathbb {P}}(X_k\#^{r_k}X_k>t)-{\mathbb {P}}(X_k\#^{r_k^*}X_k>t)+ {\mathbb {P}}(X_l\#^{r_l}X_l>t)-{\mathbb {P}}(X_l\#^{r_l^*}X_l >t) \le 0, \end{aligned}$$

which further concludes that \(M_{4}(t)\le 0\). Therefore, it follows that \(M_{1}(t)\), \(M_{3}(t)\) and \(M_{4}(t)\) are non-positive, which means that \({\overline{F}}_{\tau _1}(t)\le {\overline{F}}_{\tau _2}(t)\), for all \(t \in {\mathbb {R}}_+\). Thus, the desired result is proved. \(\square \)

1.8 Appendix A.8: Proof of Theorem 10

Proof

Let \(F_{\tau _1}\) and \(F_{\tau _2}\) be distributions of \(\tau (X_k\#^{r_k}X_k, X_l\#^{r_l}X_l, \varvec{X}^{(k,l)})\) and \(\tau (X_k\#^{r_k^*}X_k, X_l\#^{r_l^*}X_l, \varvec{X}^{(k,l)}),\) respectively. Note that

$$\begin{aligned}{} & {} F_{\tau _1}(t)- F_{\tau _2}(t) \\{} & {} \quad = [{\mathbb {P}}(X_k\#^{r_k}X_k\le t){\mathbb {P}}(X_l\#^{r_l}X_l \le t) -{\mathbb {P}}(X_k\#^{r_k^*}X_k\le t) {\mathbb {P}}(X_l\#^{r_l^*}X_l\le t)] [{\mathbb {P}} ({\tilde{B}}_{kl})\\{} & {} \qquad -{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{k{\bar{l}}})-{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{{\bar{k}}l}) -{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{A}}_{{\bar{k}}{\bar{l}}}) -{\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{A}}_{{\bar{k}} l}) +{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{k{\bar{l}}} {\tilde{B}}_{{\bar{k}}l}) + {\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{{\bar{k}} l} {\tilde{B}}_{{\bar{k}} {\bar{l}}})\\{} & {} \qquad + {\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{ k {\bar{l}}} {\tilde{A}}_{{\bar{k}}{\bar{l}}}) + {\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{B}}_{{\bar{k}} l} {\tilde{A}}_{{\bar{k}} {\bar{l}}}) - {\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{ k {\bar{l}}} {\tilde{B}}_{{\bar{k}} l} {\tilde{A}}_{{\bar{k}}{\bar{l}}})]\\{} & {} \qquad + [{\mathbb {P}}(X_k\#^{r_k}X_k\le t)-{\mathbb {P}}(X_k\#^{r_k^*}X_k\le t)] [{\mathbb {P}} ({\tilde{B}}_{k{\bar{l}}})-{\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{B}}_{{\bar{k}} {\bar{l}}})] \\{} & {} \qquad + [ {\mathbb {P}}(X_l\#^{r_l}X_l\le t)-{\mathbb {P}}(X_l\#^{r_l^*}X_l \le t)] [{\mathbb {P}} ({\tilde{B}}_{{\bar{k}} l})-{\mathbb {P}} ({\tilde{B}}_{{\bar{k}} l} {\tilde{A}}_{{\bar{k}} {\bar{l}}}) ] \\{} & {} \quad =:N_{1}(t)+N_{2}(t), \end{aligned}$$

where

$$\begin{aligned} N_{1}(t)= & {} [{\mathbb {P}}(X_k\#^{r_k}X_k\!\le \! t){\mathbb {P}}(X_l \#^{r_l}X_l\!\le \! t) -{\mathbb {P}}(X_k\#^{r_k^*}X_k\!\le \! t) {\mathbb {P}}(X_l\#^{r_l^*}X_l\!\le \! t)] [{\mathbb {P}} ({\tilde{B}}_{kl})\\{} & {} -{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{k{\bar{l}}})-{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{{\bar{k}}l}) -{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{A}}_{{\bar{k}}{\bar{l}}}) -{\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{A}}_{{\bar{k}} l}) +{\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{k{\bar{l}}} {\tilde{B}}_{{\bar{k}}l})\\{} & {} + {\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{{\bar{k}} l} {\tilde{B}}_{{\bar{k}} {\bar{l}}}) + {\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{ k {\bar{l}}} {\tilde{A}}_{{\bar{k}}{\bar{l}}}) + {\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{B}}_{{\bar{k}} l} {\tilde{A}}_{{\bar{k}} {\bar{l}}}) - {\mathbb {P}} ({\tilde{B}}_{kl} {\tilde{B}}_{ k {\bar{l}}} {\tilde{B}}_{{\bar{k}} l} {\tilde{A}}_{{\bar{k}}{\bar{l}}})],\\ N_{2}(t)= & {} [{\mathbb {P}}(X_k\#^{r_k}X_k\le t)-{\mathbb {P}}(X_k\#^{r_k^*}X_k\le t)] [{\mathbb {P}} ({\tilde{B}}_{k{\bar{l}}}) -{\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{B}}_{{\bar{k}} {\bar{l}}})] \\{} & {} + [ {\mathbb {P}}(X_l\#^{r_l}X_l\le t)-{\mathbb {P}}(X_l\#^{r_l^*}X_l \le t)][{\mathbb {P}} ({\tilde{B}}_{{\bar{k}} l}) -{\mathbb {P}} ({\tilde{B}}_{{\bar{k}} l} {\tilde{A}}_{{\bar{k}} {\bar{l}}}) ]. \end{aligned}$$

First, according to Corollary 4.3 of Zhang and Zhao (2019), \((r_k, r_l)\overset{\textrm{m}}{\succeq }\ (r_k^*, r_l^*)\) implies

$$\begin{aligned} {\mathbb {P}}(X_k\#^{r_k}X_k\le t){\mathbb {P}}(X_l\#^{r_l}X_l\le t)-{\mathbb {P}}(X_k\#^{r_k^*}X_k\le t) {\mathbb {P}}(X_l\#^{r_l^*}X_l\le t) \le 0. \end{aligned}$$

Then by using condition (ii), we have \(N_{1}(t)\le 0\). On the other hand,

$$\begin{aligned} N_{2}(t)= & {} [{\mathbb {P}}(X_k\#^{r_k}X_k \le t)-{\mathbb {P}}(X_k\#^{r_k^*}X_k \le t)] [{\mathbb {P}} ({\tilde{B}}_{k{\bar{l}}})-{\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{B}}_{{\bar{k}} {\bar{l}}})\\{} & {} -{\mathbb {P}} ({\tilde{B}}_{{\bar{k}} l})+{\mathbb {P}} ({\tilde{B}}_{{\bar{k}} l} {\tilde{A}}_{{\bar{k}} \bar{l}}) ] \\{} & {} +[{\mathbb {P}}(X_k\#^{r_k}X_k \le t)-{\mathbb {P}}(X_k\#^{r_k^*}X_k \le t)+[ {\mathbb {P}}(X_l\#^{r_l}X_l \le t)\\{} & {} -{\mathbb {P}}(X_l\#^{r_l^*}X_l \le t)] [{\mathbb {P}} ({\tilde{B}}_{k{\bar{l}}})-{\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{B}}_{{\bar{k}} {\bar{l}}})]\\=: & {} N_{3}(t) +N_{4}(t), \end{aligned}$$

where

$$\begin{aligned} N_{3}(t)= & {} [{\mathbb {P}}(X_k\#^{r_k^*}X_k> t)-{\mathbb {P}}(X_k\#^{r_k}X_k > t)] [{\mathbb {P}} ({\tilde{B}}_{k{\bar{l}}})\\{} & {} \quad -{\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{B}}_{{\bar{k}} {\bar{l}}})-{\mathbb {P}} ({\tilde{B}}_{{\bar{k}} l})+{\mathbb {P}} ({\tilde{B}}_{{\bar{k}} l} {\tilde{A}}_{{\bar{k}} \bar{l}}) ],\\ N_{4}(t)= & {} [{\mathbb {P}}(X_k\#^{r_k}X_k \le t)-{\mathbb {P}}(X_k\#^{r_k^*}X_k \le t)+ {\mathbb {P}}(X_l\#^{r_l}X_l \le t)\\{} & {} \quad -{\mathbb {P}}(X_l\#^{r_l^*}X_l \le t)] [{\mathbb {P}} ({\tilde{B}}_{k{\bar{l}}})-{\mathbb {P}} ({\tilde{B}}_{k {\bar{l}}} {\tilde{B}}_{{\bar{k}} {\bar{l}}})]. \end{aligned}$$

Note that \(r_k\ge r_k^*\), and this implies

$$\begin{aligned} {\mathbb {P}}(X_k\#^{r_k^*}X_k>t)-{\mathbb {P}}(X_k\#^{r_k}X_k>t) \le 0. \end{aligned}$$

With this inequality and condition (ii), we have \(N_{3}(t)\le 0\). Besides, condition (iii) implies

$$\begin{aligned} {\mathbb {P}}(X_k\#^{r_k}X_k \le t)-{\mathbb {P}}(X_k\#^{r_k^*}X_k \le t)+ {\mathbb {P}}(X_l\#^{r_l}X_l \le t)-{\mathbb {P}}(X_l\#^{r_l^*}X_l \le t)\le 0, \end{aligned}$$

which concludes that \(N_{4}(t)\le 0\). Therefore, it follows that \(N_{1}(t)\), \(N_{3}(t)\) and \(N_{4}(t)\) are non-positive, which means that \(F_{\tau _1}(t)\le F_{\tau _2}(t)\), for all \(t \in {\mathbb {R}}_+\). Thus, the proof is finished. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, Y. Stochastic comparisons of relevation allocation policies in coherent systems. TEST 32, 865–907 (2023). https://doi.org/10.1007/s11749-023-00855-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-023-00855-0

Keywords

Mathematics Subject Classification

Navigation