Skip to main content
Log in

Aortic arch replacement for degenerative aneurysms: advances during the last decade

  • Current Topics Review Article
  • Published:
General Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

During the last decade, treatment paradigm for degenerative aortic arch aneurysms has been changed by a better understanding of the pathophysiology of brain complication and introduction of endovascular technologies. To avoid neurocognitive dysfunction, safe duration of deep hypothermic circulatory arrest is now considered <25 min, and retrograde cerebral perfusion became less frequently used. Selective cerebral perfusion (SCP) is not associated with neurocognitive decline unless profound hypothermia (<20 °C) is used, which may suggest profound hypothermic SCP is not advantageous but may be detrimental. Attempts have been made to use mild to moderate hypothermia during SCP, and safe duration of distal circulatory arrest seems <60 min at 28 °C to avoid ischemic spinal cord injury. Three-vessel perfusion seems advantageous to provide adequate brain and spinal cord protection. To avoid aortogenic brain atheroembolism in the high risk patients, we previously proposed the “isolation” technique, where SCP is established before systemic perfusion. This technique has subsequently been modified to use both axillary and left carotid arteries for systemic arterial return, so that aortogenic emboli may not enter the brain circulation. In the TEVAR (thoracic endovascular aortic repair) era, hybrid operations such as the frozen elephant trunk or TEVAR completion after the elephant trunk are increasingly performed for extensive or distal arch aneurysms. It should be noted, however, that the frozen elephant trunk operation for extensive aneurysms carries an increased risk of paraplegia, and for distal arch aneurysms its outcome is not better than that after the standard open repair in Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kazui T, Washiyama N, Muhammad BA, Terada H, Yamashita K, Takinami M. Improved results of atherosclerotic arch aneurysm operations with a refined technique. J Thorac Cardiovasc Surg. 2001;121:491–9.

    Article  PubMed  CAS  Google Scholar 

  2. Shiiya N, Kunihara T, Imamura M, Murashita T, Matsui Y, Yasuda K. Surgical management of atherosclerotic aortic arch aneurysms using selective cerebral perfusion: 7-year experience in 52 patients. Eur J Cardiothorac Surg. 2000;17:266–71.

    Article  PubMed  CAS  Google Scholar 

  3. Ergin MA, Uysal S, Reich DL, Apaydin A, Lansman SL, McCullough JN, et al. Temporary neurological dysfunction after deep hypothermic circulatory arrest: a clinical marker of long-term functional deficit. Ann Thorac Surg. 1999;67:1887–90.

    Article  PubMed  CAS  Google Scholar 

  4. Lin R, Svensson L, Gupta R, Lytle B, Krieger D. Chronic ischemic cerebral white matter disease is a risk factor for nonfocal neurologic injury after total aortic arch replacement. J Thorac Cardiovasc Surg. 2007;133:1059–65.

    Article  PubMed  Google Scholar 

  5. Morimoto N, Okada K, Uotani K, Kanda F, Okita Y. Leukoaraiosis and hippocampal atrophy predict neurologic outcome in patients who undergo total aortic arch replacement. Ann Thorac Surg. 2009;88:476–81.

    Article  PubMed  Google Scholar 

  6. Okada T, Shimamoto M, Yamazaki F, Nakai M, Miura Y, Itonaga T, et al. Insights of stroke in aortic arch surgery: identification of significant risk factors and surgical implication. Gen Thorac Cardiovasc Surg. 2012;60:268–74.

    Article  PubMed  Google Scholar 

  7. Griepp RB. Cerebral protection during aortic arch surgery. J Thorac Cardiovasc Surg. 2001;121:425–7.

    Article  PubMed  CAS  Google Scholar 

  8. McCullough JN, Zhang N, Reich DL, Juvonen TS, Klein JJ, Spielvogel D, et al. Cerebral metabolic suppression during hypothermic circulatory arrest in humans. Ann Thorac Surg. 1999;67:1895–9.

    Article  PubMed  CAS  Google Scholar 

  9. Rokkas CK, Kouchoukos NT. Single-stage extensive replacement of the thoracic aorta: the arch-first technique. J Thorac Cardiovasc Surg. 1999;117:99–105.

    Article  PubMed  CAS  Google Scholar 

  10. Ueda Y, Miki S, Kusuhara K, Okita Y, Tahata T, Yamanaka K. Surgical treatment of aneurysm or dissection involving the ascending aorta and aortic arch, utilizing circulatory arrest and retrograde cerebral perfusion. J Cardiovasc Surg (Torino). 1990;31:553–8.

    CAS  Google Scholar 

  11. Ehrlich MP, Hagl C, McCullough JN, Zhang N, Shiang H, Bodian C, et al. Retrograde cerebral perfusion provides negligible flow through brain capillaries in the pig. J Thorac Cardiovasc Surg. 2001;122:331–8.

    Article  PubMed  CAS  Google Scholar 

  12. Okita Y, Minatoya K, Tagusari O, Ando M, Nagatsuka K, Kitamura S. Prospective comparative study of brain protection in total aortic arch replacement: deep hypothermic circulatory arrest with retrograde cerebral perfusion or selective antegrade cerebral perfusion. Ann Thorac Surg. 2001;72:72–9.

    Article  PubMed  CAS  Google Scholar 

  13. Usui A, Miyata H, Ueda Y, Motomura N, Takamoto S. Risk-adjusted and case-matched comparative study between antegrade and retrograde cerebral perfusion during aortic arch surgery: based on the Japan Adult Cardiovascular Surgery Database : the Japan Cardiovascular Surgery Database Organization. Gen Thorac Cardiovasc Surg. 2012;60:132–9.

    Article  PubMed  Google Scholar 

  14. Harrington DK, Bonser M, Moss A, Heafield MT, Riddoch MJ, Bonser RS. Neuropsychometric outcome following aortic arch surgery: a prospective randomized trial of retrograde cerebral perfusion. J Thorac Cardiovasc Surg. 2003;126:638–44.

    Article  PubMed  CAS  Google Scholar 

  15. Di Eusanio M, Schepens MA, Morshuis WJ, Di Bartolomeo R, Pierangeli A, Dossche KM. Antegrade selective cerebral perfusion during operations on the thoracic aorta: factors influencing survival and neurologic outcome in 413 patients. J Thorac Cardiovasc Surg. 2002;124:1080–6.

    Article  PubMed  Google Scholar 

  16. Spielvogel D, Etz CD, Silovitz D, Lansman SL, Griepp RB. Aortic arch replacement with a trifurcated graft. Ann Thorac Surg. 2007;83:S791–5.

    Article  PubMed  Google Scholar 

  17. Ozatik MA, Kucuker SA, Tuluce H, Sartias A, Sener E, Karakas S, et al. Neurocognitive functions after aortic arch repair with right brachial artery perfusion. Ann Thorac Surg. 2004;78:591–5.

    Article  PubMed  Google Scholar 

  18. Pacini D, Di Marco L, Leone A, Tonon C, Pettinato C, Fonti C, et al. Cerebral functions and metabolism after antegrade selective cerebral perfusion in aortic arch surgery. Eur J Cardiothorac Surg. 2010;37:1322–31.

    Article  PubMed  Google Scholar 

  19. Hiraoka K, Kawatsu S, Mori E, Saiki Y. Total aortic arch replacement using hypothermic circulatory arrest with antegrade selective cerebral perfusion: are there cerebral deficits other than frank stroke? Gen Thorac Cardiovasc Surg. 2012;60:345–9.

    Article  PubMed  Google Scholar 

  20. Svensson LG, Nadolny EM, Penney DL, Jacobson J, Kimmel WA, Entrup MH, et al. Prospective randomized neurocognitive and S-100 study of hypothermic circulatory arrest, retrograde brain perfusion, and antegrade brain perfusion for aortic arch operations. Ann Thorac Surg. 2001;71:1905–12.

    Article  PubMed  CAS  Google Scholar 

  21. Uysal S, Lin HM, Fischer GW, Di Luozzo G, Reich DL. Selective cerebral perfusion for thoracic aortic surgery: association with neurocognitive outcome. J Thorac Cardiovasc Surg. 2012;143:1205–12.

    Article  PubMed  Google Scholar 

  22. Bachet J, Guilmet D, Goudot B, Termignon JL, Teodori G, Dreyfus G, et al. Cold cerebroplegia. A new technique of cerebral protection during operations on the transverse aortic arch. J Thorac Cardiovasc Surg. 1991;102:85–93.

    PubMed  CAS  Google Scholar 

  23. Shiiya N, Asada M, Matsui Y, Sakuma M, Oba J, Gohda T, et al. Clinical results of selective cerebral perfusion during reconstruction of the transverse aortic arch. Nippon Kyobu Geka Gakkai Zasshi. 1994;42:1858–64.

    PubMed  CAS  Google Scholar 

  24. Tanaka J, Shiki K, Asou T, Yasui H, Tokunaga K. Cerebral autoregulation during deep hypothermic nonpulsatile cardiopulmonary bypass with selective cerebral perfusion in dogs. J Thorac Cardiovasc Surg. 1988;95:124–32.

    PubMed  CAS  Google Scholar 

  25. Halstead JC, Spielvogel D, Meier DM, Weisz D, Bodian C, Zhang N, et al. Optimal pH strategy for selective cerebral perfusion. Eur J Cardiothorac Surg. 2005;28:266–73.

    Article  PubMed  Google Scholar 

  26. Dahlbacka S, Alaoja H, Makela J, Niemela E, Laurila P, Kiviluoma K, et al. Effects of pH management during selective antegrade cerebral perfusion on cerebral microcirculation and metabolism: alpha-stat versus pH-stat. Ann Thorac Surg. 2007;84:847–55.

    Article  PubMed  Google Scholar 

  27. Ohkura K, Kazui T, Yamamoto S, Yamashita K, Terada H, Washiyama N, et al. Comparison of pH management during antegrade selective cerebral perfusion in canine models with old cerebral infarction. J Thorac Cardiovasc Surg. 2004;128:378–85.

    Article  PubMed  Google Scholar 

  28. Shann KG, Likosky DS, Murkin JM, Baker RA, Baribeau YR, DeFoe GR, et al. An evidence-based review of the practice of cardiopulmonary bypass in adults: a focus on neurologic injury, glycemic control, hemodilution, and the inflammatory response. J Thorac Cardiovasc Surg. 2006;132:283–90.

    Article  PubMed  Google Scholar 

  29. Usui A, Fujimoto K, Ishiguchi T, Yoshikawa M, Akita T, Ueda Y. Cerebrospinal dysfunction after endovascular stent-grafting via a median sternotomy: the frozen elephant trunk procedure. Ann Thorac Surg. 2002;74:S1821–4.

    Article  PubMed  Google Scholar 

  30. Miyamoto Y, Fukui S, Kajiyama T, Mitsuno M, Yamamura M, Tanaka H, et al. Analysis of collateral blood flow to the lower body during selective cerebral perfusion: is three-vessel perfusion better than two-vessel perfusion? Eur J Cardiothorac Surg. 2009;35:684–7.

    Article  PubMed  Google Scholar 

  31. Kunihara T, Shiiya N, Matsuzaki K, Matsui Y. Metabolic relevance during isolation technique in total arch repair for patients at high risk with embolic stroke. Interact Cardiovasc Thorac Surg. 2008;7:58–62.

    Article  PubMed  Google Scholar 

  32. Pacini D, Leone A, Di Marco L, Marsilli D, Sobaih F, Turci S, et al. Antegrade selective cerebral perfusion in thoracic aorta surgery: safety of moderate hypothermia. Eur J Cardiothorac Surg. 2007;31:618–22.

    Article  PubMed  Google Scholar 

  33. Minatoya K, Ogino H, Matsuda H, Sasaki H, Tanaka H, Kobayashi J, et al. Evolving selective cerebral perfusion for aortic arch replacement: high flow rate with moderate hypothermic circulatory arrest. Ann Thorac Surg. 2008;86:1827–31.

    Article  PubMed  Google Scholar 

  34. Zierer A, Detho F, Dzemali O, Aybek T, Moritz A, Bakhtiary F. Antegrade cerebral perfusion with mild hypothermia for aortic arch replacement: single-center experience in 245 consecutive patients. Ann Thorac Surg. 2011;91:1868–73.

    Article  PubMed  Google Scholar 

  35. Kamiya H, Hagl C, Kropivnitskaya I, Bothig D, Kallenbach K, Khaladj N, et al. The safety of moderate hypothermic lower body circulatory arrest with selective cerebral perfusion: a propensity score analysis. J Thorac Cardiovasc Surg. 2007;133:501–9.

    Article  PubMed  Google Scholar 

  36. Etz CD, Luehr M, Kari FA, Lin HM, Kleinman G, Zoli S, et al. Selective cerebral perfusion at 28 degrees C—is the spinal cord safe? Eur J Cardiothorac Surg. 2009;36:946–55.

    Article  PubMed  Google Scholar 

  37. Della Corte A, Scardone M, Romano G, Amarelli C, Biondi A, De Santo LS, et al. Aortic arch surgery: thoracoabdominal perfusion during antegrade cerebral perfusion may reduce postoperative morbidity. Ann Thorac Surg. 2006;81:1358–64.

    Article  PubMed  Google Scholar 

  38. Matsuyama S, Tabata M, Shimokawa T, Matsushita A, Fukui T, Takanashi S. Outcomes of total arch replacement with stepwise distal anastomosis technique and modified perfusion strategy. J Thorac Cardiovasc Surg. 2012;143:1377–81.

    Article  PubMed  Google Scholar 

  39. Katz ES, Tunick PA, Rusinek H, Ribakove G, Spencer FC, Kronzon I. Protruding aortic atheromas predict stroke in elderly patients undergoing cardiopulmonary bypass: experience with intraoperative transesophageal echocardiography. J Am Coll Cardiol. 1992;20:70–7.

    Article  PubMed  CAS  Google Scholar 

  40. Shiiya N, Kunihara T, Kamikubo Y, Yasuda K. Isolation technique for stroke prevention in patients with a mobile atheroma. Ann Thorac Surg. 2001;72:1401–2.

    Article  PubMed  CAS  Google Scholar 

  41. Fukuda I, Fujimori S, Daitoku K, Yanaoka H, Inamura T. Flow velocity and turbulence in the transverse aorta of a proximally directed aortic cannula: hydrodynamic study in a transparent model. Ann Thorac Surg. 2009;87:1866–71.

    Article  PubMed  Google Scholar 

  42. Minakawa M, Fukuda I, Inamura T, Yanaoka H, Fukui K, Daitoku K, et al. Hydrodynamic evaluation of axillary artery perfusion for normal and diseased aorta. Gen Thorac Cardiovasc Surg. 2008;56:215–21.

    Article  PubMed  Google Scholar 

  43. Kato M, Ohnishi K, Kaneko M, Ueda T, Kishi D, Mizushima T, et al. New graft-implanting method for thoracic aortic aneurysm or dissection with a stented graft. Circulation. 1996;94:II188–93.

    Article  PubMed  CAS  Google Scholar 

  44. Suto Y, Yasuda K, Shiiya N, Murashita T, Kawasaki M, Imamura M, et al. Stented elephant trunk procedure for an extensive aneurysm involving distal aortic arch and descending aorta. J Thorac Cardiovasc Surg. 1996;112:1389–90.

    Article  PubMed  CAS  Google Scholar 

  45. Baraki H, Hagl C, Khaladj N, Kallenbach K, Weidemann J, Haverich A, et al. The frozen elephant trunk technique for treatment of thoracic aortic aneurysms. Ann Thorac Surg. 2007;83:S819–23.

    Article  PubMed  Google Scholar 

  46. Midorikawa H, Kanno M, Ishikawa K. Fully supported open stent grafting applied with a Matsui-Kitamura (MK) stent in treatment of distal arch aneurysm. Gen Thorac Cardiovasc Surg. 2008;56:209–14.

    Article  PubMed  Google Scholar 

  47. Yamada K, Mochizuki T, Tsubota H, Funamoto M. Early and midterm outcomes of open stent-graft treatment for distal aortic arch aneurysm. Gen Thorac Cardiovasc Surg. 2008;56:490–7.

    Article  PubMed  Google Scholar 

  48. Di Bartolomeo R, Di Marco L, Armaro A, Marsilli D, Leone A, Pilato E, et al. Treatment of complex disease of the thoracic aorta: the frozen elephant trunk technique with the E-vita open prosthesis. Eur J Cardiothorac Surg. 2009;35:671–5.

    Article  PubMed  Google Scholar 

  49. Uchida N, Shibamura H, Katayama A, Sutoh M, Kuraoka M, Ishihara H. Long-term results of the frozen elephant trunk technique for the extensive arteriosclerotic aneurysm. J Thorac Cardiovasc Surg. 2010;139:913–7.

    Article  PubMed  Google Scholar 

  50. Matsuda H, Tsuji Y, Sugimoto K, Okita Y. Secondary elephant trunk fixation with endovascular stent grafting for extensive/multiple thoracic aortic aneurysm. Eur J Cardiothorac Surg. 2005;28:335–6.

    Article  PubMed  Google Scholar 

  51. Greenberg RK, Haddad F, Svensson L, O’Neill S, Walker E, Lyden SP, et al. Hybrid approaches to thoracic aortic aneurysms: the role of endovascular elephant trunk completion. Circulation. 2005;112:2619–26.

    Article  PubMed  Google Scholar 

  52. Kawaharada N, Kurimoto Y, Ito T, Koyanagi T, Yamauchi A, Nakamura M, et al. Hybrid treatment for aortic arch and proximal descending thoracic aneurysm: experience with stent grafting for second-stage elephant trunk repair. Eur J Cardiothorac Surg. 2009;36:956–61.

    Article  PubMed  Google Scholar 

  53. Obitsu Y, Koizumi N, Iida Y, Iwahashi T, Saiki N, Watanabe Y, et al. Long-term results of second-stage thoracic endovascular aortic repair following total aortic arch replacement. Gen Thorac Cardiovasc Surg. 2010;58:501–5.

    Article  PubMed  Google Scholar 

  54. Milewski RK, Szeto WY, Pochettino A, Moser GW, Moeller P, Bavaria JE. Have hybrid procedures replaced open aortic arch reconstruction in high-risk patients? A comparative study of elective open arch debranching with endovascular stent graft placement and conventional elective open total and distal aortic arch reconstruction. J Thorac Cardiovasc Surg. 2010;140:590–7.

    Article  PubMed  Google Scholar 

  55. Sakata R, Fujii Y, Kuwano H. Thoracic and cardiovascular surgery in Japan during 2009: annual report by the Japanese Association for Thoracic Surgery. Gen Thorac Cardiovasc Surg. 2011;59:636–67.

    Article  PubMed  Google Scholar 

  56. Ogino H, Ando M, Sasaki H, Minatoya K. Total arch replacement using a stepwise distal anastomosis for arch aneurysms with distal extension. Eur J Cardiothorac Surg. 2006;29:255–7.

    Article  PubMed  Google Scholar 

  57. Yoshitatsu M, Nomura F, Toda K, Katayama A, Tamura K, Katayama K, et al. The “eaves” technique for distal anastomosis in aortic arch replacement. Ann Thorac Surg. 2005;79:1422–4.

    Article  PubMed  Google Scholar 

  58. Di Eusanio M, Schepens MA, Morshuis WJ, Dossche KM, Kazui T, Ohkura K, et al. Separate grafts or en bloc anastomosis for arch vessels reimplantation to the aortic arch. Ann Thorac Surg. 2004;77:2021–8.

    Article  PubMed  Google Scholar 

  59. Flores J, Kunihara T, Shiiya N, Yoshimoto K, Matsuzaki K, Yasuda K. Extensive deployment of the stented elephant trunk is associated with an increased risk of spinal cord injury. J Thorac Cardiovasc Surg. 2006;131:336–42.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihiko Shiiya.

Additional information

The review was submitted at the invitation of the editorial committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiiya, N. Aortic arch replacement for degenerative aneurysms: advances during the last decade. Gen Thorac Cardiovasc Surg 61, 191–196 (2013). https://doi.org/10.1007/s11748-012-0166-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11748-012-0166-4

Keywords

Navigation