Skip to main content
Log in

Functional restoration of endothelial cells of the cryopreserved heart valve

  • Original Article
  • Published:
General Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Purpose

Although several approaches have been tried to improve the durability of cryopreserved valves, cellular restoration after thawing remains to be investigated. The aim of our study was to assess the functional restoration of endothelial cells of cryopreserved heart valves by in vitro culture for an alternative step to improving longevity.

Methods

Cryopreserved human umbilical vein endothelial cells (HUVECs) and porcine aortic cusps were cultivated for 14 days after thawing. Then the cellular activity of the enzymes cytosolic esterase and mitochondrial dehydrogenase was measured. The cellular viability of cryopreserved cusps was also assessed using confocal laser scanning microscopy.

Results

The number of viable HUVECs decreased markedly after cryopreservation and thawing but recovered to pre-cryopreservation level after 14 days of culture. In contrast, the enzyme activity of the cryopreserved porcine aortic cusps showed recovery at 7 days of in vitro tissue culture after thawing. Confocal laser scanning microscopy findings showed that the cellular cytosolic esterase activity of cryopreserved cusps deteriorated after thawing but displayed considerable recovery by day 14 of culture.

Conclusion

The functional recovery of endothelial cells in cryopreserved heart valves seems to require tissue culture of at least 14 days. Ex vivo endothelial restoration of cryopreserved heart valves may add to heart valve durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lupinetti FM, Tsai TT, Kneebone JM, Bove EL. Effect of cryopreservation on the presence of endothelial cells on human valve allografts. J Thorac Cardiovasc Surg 1993;106:912–917.

    PubMed  CAS  Google Scholar 

  2. Lang SJ, Giordano MS, Cardon-Cardo C, Summers BD, Staiano-Coico L, Hajjar DP. Biochemical and cellular characterization of cardiac valve tissue after cryopreservation or antibiotic preservation. J Thorac Cardiovasc Surg 1994;108:63–67.

    PubMed  CAS  Google Scholar 

  3. Baskett RJ, Ross DB, Nanton MA, Murphy DA. Factors in the early failure of cryopreserved homograft pulmonary valves in children: preserved immunogenicity? J Thorac Cardiovasc Surg 1996;112:1170–1179.

    Article  PubMed  CAS  Google Scholar 

  4. Tominaga T, Kitagawa T, Masuda Y, Hori T, Kano M, Yasuta M, et al. Viability of cryopreserved semilunar valves: an evaluation of cytosolic and mitochondrial activities. Ann Thorac Surg 2000;70:792–795.

    Article  PubMed  CAS  Google Scholar 

  5. Kano M, Masuda Y, Tominaga T, Hori T, Kitaichi T, Yoshizumi M, et al. Collagen synthesis and collagenase activity of cryopreserved heart valves. J Thorac Cardiovasc Surg 2001;122:706–711.

    Article  PubMed  CAS  Google Scholar 

  6. Mitchel RN, Jonas RA, Schoen FJ. Pathology of explanted cryopreserved allograft valves: comparison with aortic valves from orthotopic heart transplants. J Thorac Cardiovasc Surg 1998;115:118–127.

    Article  Google Scholar 

  7. Koolbergen DR, Hazekamp MG, de Heer E, Bruggemans EF, Huysmans HA, Dion RA, et al. The pathology of fresh and cryopreserved homograft heart valves: an analysis of forty explanted homograft valves. J Thorac Cardiovasc Surg 2002;124:689–697.

    Article  PubMed  Google Scholar 

  8. Légaré JF, Ross DB, Issekutz TB, Ruigrok W, Creaser K, Hirsch GM, et al. Prevention of allograft heart valve failure in a rat model. J Thorac Cardiovasc Surg 2001;122: 310–317.

    Article  PubMed  Google Scholar 

  9. Légaré JF, Lee TD, Greaser K, Ross DB. T lymphocytes mediate leaflet destruction and allograft aortic valve failure in rats. Ann Thorac Surg 2000;70:1238–1245.

    Article  PubMed  Google Scholar 

  10. Cebotari S, Mertsching H, Kallenbach K, Kostin S, Repin O, Batrinac A, et al. Construction of autologous human heart valves based on an acellular allograft matrix. Circulation 2002;106(suppl 1):I63–I68.

    PubMed  Google Scholar 

  11. Kitagawa T, Masuda Y, Tominaga T, Kano M. Cellular biology of cryopreserved allograft valves. J Med Invest 2001; 48:123–132.

    PubMed  CAS  Google Scholar 

  12. Hopkins RA, Jones AL, Wolfinbarger L, Moore Ma, Bert AA, Lofland GK. Decellularization reduces calcification while improving both durability and 1-year functional results of pulmonary homograft valves in juvenile sheep. J Thorac Cardiovasc Surg 2009;137:907–913.

    Article  PubMed  Google Scholar 

  13. Dohmen PM, Lembcke A, Holinski S, Kivelitz D, Braun JP, Pruss A, et al. Mid-term clinical results using a tissue-engineered pulmonary valve to reconstruct the right ventricular outflow tract during the Ross procedure. Ann Thorac Surg 2007;84:729–736.

    Article  PubMed  Google Scholar 

  14. Narine K, Ing EC, Cornelissen M, Dosomer F, Beele H, Vanlangenhove L, et al. Readily available porcine aortic valve matrices for use in tissue valve engineering: is cryopreservation an option? Cryobiology 2006;53:169–181.

    Article  PubMed  CAS  Google Scholar 

  15. Schmidt D, Mol A, Breymann C, Achermann J, Odermatt B, Gössi M. Living autologous heart valves engineered from human prenatally harvested progenitors. Circulation 2006; 114(suppl):I125–I131.

    Article  PubMed  Google Scholar 

  16. Sodian R, Lueders C, Kraemer L, Kuebler W, Shakibaei M, Reichart B, et al. Tissue engineering of autologous human heart valves using cryopreserved vascular umbilical cord cells. Ann Thorac Surg 2006;81:2207–2216.

    Article  PubMed  Google Scholar 

  17. Tavakkol Z, Gelehrter S, Goldberg CS, Bove EL, Devaney EJ, Ohye RG. Superior durability of SynerGraft pulmonary allografts compared with standard cryopreserved allografts. Ann Thorac Surg 2005;80:1610–1614.

    Article  PubMed  Google Scholar 

  18. Zehr KJ, Yagubyan M, Connolly HM, Nelson SM, Schaff HV. Aortic root replacement with a novel decellularized cryopreserved aortic homograft: postoperative immunoreactivity and early results. J Thorac Cardiovasc Surg 2005;130: 1010–1015.

    Article  PubMed  Google Scholar 

  19. Koolbergen DR, Hazekamp MG, Kurvers M, de Heer E, Cornelisse CJ, Huysmans HA, et al. Tissue chimerism in human cryopreserved homograft valve explants demonstrated in situ hybridization. Ann Thorac Surg 1998;66:S225–S232.

    Article  PubMed  CAS  Google Scholar 

  20. Brarili F, Dainese L, Cheema FH, Dell’Antonio G, Topkara VK, Rossoni G, et al. Rates of cycling cells in cryopreserved valvular homograft: a preliminary study. Artif Organs 2007;31:152–154.

    Article  Google Scholar 

  21. Sung K, Kim WG, Seo JW. Immunologically untreated fresh xenograft implantation in a pig-to-goat model. Artif Organs 2008;32:810–815.

    Article  PubMed  Google Scholar 

  22. Yoshizumi M, Inui D, Okishima N, Houchi H, Tsuchiya K, Wakabayashi H, et al. Endothelin-1-(l-31), a novel vasoactive peptide, increase [Ca2+]i in human coronary artery smooth muscle cells. Eur J Pharmacol 1998;348:305–309.

    Article  PubMed  CAS  Google Scholar 

  23. Niwaya K, Sakaguchi H, Kawachi K, Kitamura S. Effect of warm ischemia and cryopreservation on cell viability of human allograft valves. Ann Thorac Surg 1995;60:S114–S117.

    Article  PubMed  CAS  Google Scholar 

  24. Boyde A. Stereoscopic images in confocal (tandem scanning) microscopy. Science 1985;230:1270–1272.

    Article  PubMed  CAS  Google Scholar 

  25. Krs O, Slizová D, Burkert J, Spatenka J, Hottmar P. Impact of processing on surface structure of human cardiac valve allografts. Acta Medica (Hradec Kralove) 2004;47:97–99.

    Google Scholar 

  26. Légaré JF. Pathology of fresh and cryopreserved homograft heart valves: to the editor. J Thorac Cardiovasc Surg 2004;127:1850–1851.

    Article  PubMed  Google Scholar 

  27. Verghese S, Cherian KM. HLA expression in aortic and pulmonary homografts: effects of cryopreservation. Indian Heart J 2002;54:394–398.

    PubMed  Google Scholar 

  28. Feingold B, Wearden PD, Morell VO, Galvis D, Galambos C. Expression of A and B blood group antigens on cryopreserved homografts. Ann Thorac Surg 2009;87:211–214.

    Article  PubMed  Google Scholar 

  29. Lehr EJ, Rayat GR, Desai LS, Coe JY, Korbutt GS, Ross DB. Inbred or outbred? An evaluation of the functional allogenicity of farm sheep used in cardiac valve studies. J Thorac Cardiovasc Surg 2006;132:1156–1161.

    Article  PubMed  Google Scholar 

  30. Yap CH, Skillington PD, Matalanis G, Davis BB, Tait BD, Hudson F, et al. Anti-HLA antibodies after cryopreserved allograft valve implantation does not predict valve dysfunction at three-year follow up. J Heart Valve Dis 2006;15:540–544.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Kitagawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujimoto, E., Yoshizumi, M., Kanbara, T. et al. Functional restoration of endothelial cells of the cryopreserved heart valve. Gen Thorac Cardiovasc Surg 59, 169–174 (2011). https://doi.org/10.1007/s11748-010-0711-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11748-010-0711-y

Key words

Navigation