Skip to main content
Log in

Identification and Characterization of Δ12, Δ6, and Δ5 Desaturases from the Green Microalga Parietochloris incisa

  • Original Article
  • Published:
Lipids

Abstract

The freshwater microalga Parietochloris incisa accumulates, under nitrogen starvation, large amounts of triacylglycerols containing approximately 60% of the ω6 very long-chain polyunsaturated fatty acid (VLC-PUFA), arachidonic acid. Based on sequence homology, we isolated three cDNA sequences from P. incisa, designated PiDesD12, PiDesD6, PiDesD5. The deduced amino acid sequences of the three genes contained three conserved histidine motifs; the front-end desaturases, PiDes6 and PiDes5, contained a fused N-terminal cytochrome b5 domain. By functional characterization in the yeast Saccharomyces cerevisiae, we confirmed that PiDesD6, PiDesD5 cDNA encode membrane bound desaturases with Δ6, and Δ5 activity, respectively. Both PiDes6 and PiDes5 can indiscriminately desaturate both ω6 and ω3 substrates. A phylogenetic analysis showed that the three genes were homologous to the corresponding desaturases from green microalgae and lower plants that were functionally characterized. Quantitative real-time PCR revealed the concerted expression pattern of all three genes in P. incisa cells subjected to nitrogen starvation, featuring maximum expression level on day 3 of starvation, corresponding to the sharpest increase in the share of arachidonic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ARA:

Arachidonic acid

DGTS:

Diacylglyceroltrimethylhomoserine

DHA:

Docosahexaenoic acid

DGLA:

Dihomo-γ-linolenic acid

EPA:

Eicosapentaenoic acid

GLA:

γ-Linolenic acid

LNA:

Linoleic acid

PtdCho:

Phosphatidylcholine

PtdEtn:

Phosphatidylethanolamine

RTQPCR:

Real time quantitative polymerase chain reaction

TFA:

Total fatty acids

VLC-PUFA:

Very long-chain polyunsaturated fatty acids

References

  1. Horrocks LA, Yeo YK (1999) Health benefits of docosohexaenoic acid (DHA). Pharmacol Res 40:211–225

    Article  PubMed  CAS  Google Scholar 

  2. Crawford MA, Costeloe K, Ghebremeskel K, Phylactos A, Skirvin L, Stacey F (1997) Are deficits of arachidonic acid and docosahexaenoic acids responsible for the neural and vascular complications of preterm babies? Am J Clin Nutr 66:1032–1041

    Google Scholar 

  3. Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A, Cohen Z (2002) Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 60:497–503

    Article  PubMed  CAS  Google Scholar 

  4. Cohen Z, Khozin-Goldberg I (2005) Searching for PUFA-rich microalgae. In: Cohen Z, Ratledge C (eds) Single cell oils. Am Oil Chem Soc, Champaign, pp 53–72

    Google Scholar 

  5. Khozin-Goldberg I, Bigogno C, Shrestha P, Cohen Z (2002) Nitrogen starvation induces the accumulation of arachidonic acid in the freshwater green alga Parietochloris incisa (Trebouxiophyceae). J Phycol 38:991–994

    Article  CAS  Google Scholar 

  6. Cohen Z, Reungjitchachawali M, Siangdung W, Tanticharoen M, Heimer YM (1993) Herbicide resistant lines of microalgae: growth and fatty acid composition. Phytochemistry 34:973–978

    Article  CAS  Google Scholar 

  7. Abbadi A, Domergue F, Bauer J, Napier JA, Welti R, Zähringer U, Cirpus P, Heinz E (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16:2734–2748

    Article  PubMed  CAS  Google Scholar 

  8. Meyer A, Kirsch H, Domergue F, Abbadi A, Sperling P, Bauer J, Cirpus P, Zank TK, Moreau H, Roscoe TJ, Zähringer U, Heinz E (2004) Novel fatty acid elongases and their use for the reconstitution of docosahexaenoic acid biosynthesis. J Lipid Res 45:1899–1909

    Article  PubMed  CAS  Google Scholar 

  9. Khozin I, Adlerstein D, Bigogno C, Heimer YM, Cohen Z (1997) Elucidation of the biosynthesis of eicosapentaenoic acid in the microalga Porphyridium cruentum (II. Studies with radiolabeled precursors). Plant Physiol 114:223–230

    PubMed  CAS  Google Scholar 

  10. Bigogno C, Khozin-Goldberg I, Adlerstein D, Cohen Z (2002) Biosynthesis of arachidonic acid in the oleaginous microalga Parietochloris incisa (Chlorophyceae): radiolabeling studies. Lipids 37:209–216

    Article  PubMed  CAS  Google Scholar 

  11. Amanda E, Pereira SL, Sprecher H, Huang YS (2004) Elongation of long-chain fatty acids. Prog Lipid Res 43:36–54

    Article  CAS  Google Scholar 

  12. Nichols BW, Appleby RS (1969) The distribution of arachidonic acid in algae. Phytochemistry 8:1907–1915

    Article  CAS  Google Scholar 

  13. Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier JA, Stobart AK, Lazarus CM (2004) Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22:739–745

    Article  PubMed  CAS  Google Scholar 

  14. Serghini HC, Demandre C, Justin AM, Mazliak P (1988) Linolenic acid biosynthesis via glycerolipid molecular species in pea and spinach leaves. Phytochemistry 7:2543–2548

    Article  Google Scholar 

  15. Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    Article  PubMed  CAS  Google Scholar 

  16. Brown AP, Dann R, Bowra S, Hills MJ (1998) Characterization of expression of a plant oleate desaturase in yeast. J Am Oil Chem Soc 75:77–82

    Article  CAS  Google Scholar 

  17. Sayanova O, Smith MA, Lapinskas P, Stobart AK, Dobson G, Christie WW, Shewry PR, Napier JA (1997) Expression of a borage desaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of high levels of Δ6-desaturated fatty acids in transgenic tobacco. Proc Natl Acad Sci USA 94:4211–4216

    Article  PubMed  CAS  Google Scholar 

  18. Sperling P, Heinz E (2001) Desaturases fused to their electron donor. Eur J Lipid Sci Technol 103:158–180

    Article  CAS  Google Scholar 

  19. Napier JA, Michaelson LV, Sayanova O (2003) The role of cytochrome b 5 fusion desaturases in the synthesis of polyunsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids 68:135–143

    Article  PubMed  CAS  Google Scholar 

  20. Sperling P, Ternes P, Zank TK, Heinz E (2003) The evolution of desaturases. Prostaglandins Leukot Essent Fatty Acids 68:73–95

    Article  PubMed  CAS  Google Scholar 

  21. Napier JA, Hey SJ, Lacey DJ, Shewry PR (1998) Identification of a Caenorhabditis elegans Δ6-fatty-acid-desaturase by heterologous expression in Saccharomyces cerevisiae. Biochem J 330:611–614

    PubMed  CAS  Google Scholar 

  22. Michaelson LV, Napier JA, Lewis M, Griffiths G, Lazarus CM, Stobart AK (1998) Functional identification of a fatty acid Δ5 desaturase gene from Caenorhabditis elegans. FEBS Lett 439:215–218

    Article  PubMed  CAS  Google Scholar 

  23. Watts JL, Browse J (1999) Isolation and characterization of a Δ5-fatty acid desaturase from Caenorhabditis elegans. Arch Biochem Biophys 362:175–182

    Article  PubMed  CAS  Google Scholar 

  24. Michaelson LV, Lazarus CM, Griffiths G, Napier JA, Stobart AK (1998) Isolation of a Δ5-fatty acid desaturase gene from Mortierella alpina. J Biol Chem 273:19055–19059

    Article  PubMed  CAS  Google Scholar 

  25. Kaewsuwan S, Cahoon EB, Perroud P, Wiwat C, Panvisavas N, Quatrano RS, Cove DJ, Bunyapraphatsara N (2006) Identification and functional characterization of the moss Physcomitrella patens Δ5 desaturase gene involved in arachidonic and eicosapentaenoic acids biosynthesis. J Biol Chem 281:21988–21997

    Article  PubMed  CAS  Google Scholar 

  26. Kajikawa M, Yamato KT, Kohzu Y, Nojiri M, Sakuradani E, Shimizu S, Sakai Y, Fukuzawa H, Ohyama K (2004) Isolation and characterization of Δ6-desaturase, an ELO-like enzyme and Δ5-desaturase from the liverwort Marchantia polymorpha and production of arachidonic and eicosapentaenoic acids in the methylotrophic yeast Pichia pastoris. Plant Mol Biol 54:335–352

    Article  PubMed  CAS  Google Scholar 

  27. Domergue F, Lerchl J, Zähringer U, Heinz E (2002) Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis. Eur J Biochem 269:4105–4113

    Article  PubMed  CAS  Google Scholar 

  28. Tonon T, Sayanova O, Michaelson LV, Qing R, Harvey D, Larson TR, Li Y, Napier JA, Graham IA (2005) Fatty acid desaturases from the microalga Thalassiosira pseudonana. FEBS J 272:3401–3412

    Article  PubMed  CAS  Google Scholar 

  29. Domergue F, Abbadi A, Zähringer U, Moreau H, Heinz E (2005) In vivo characterization of the first acyl-CoA Delta6-desaturase from a member of the plant kingdom, the microalga Ostreococcus tauri. Biochem J 389:483–490

    Article  PubMed  CAS  Google Scholar 

  30. Hoffmann M, Wagner M, Abbadi A, Fulda M, Feussner I (2008) Metabolic engineering of ω3-very long chain polyunsaturated fatty acid production by an exclusively acyl-CoA-dependent pathway. J Biol Chem 283:22352–22362

    Article  PubMed  CAS  Google Scholar 

  31. Petrie JR, Shrestha P, Mansour MP, Nichols PD, Liu Q, Singh SP (2010) Metabolic engineering of omega-3 long-chain polyunsaturated fatty acids in plants using an acyl-CoA Δ6-desaturase with ω3-preference from the marine microalga Micromonas pusilla. Met Eng 12:233–240. doi:10.1016/j.ymben.2009.12.001

    Article  CAS  Google Scholar 

  32. Abbadi A, Domergue F, Bauer J, Napier JA, Welti R, Zähringer U, Cirpus P, Heinz E (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16:2734–2748

    Article  PubMed  CAS  Google Scholar 

  33. Kinney AJ, Cahoon EB, Damude HG, Hitz WD, Kolar CW, Zhan-Bin L (2004) Production of very long chain polyunsaturated fatty acids in oilseeds. Patent WO 2004/071467 A2

  34. Wu G, Truksa M, Datla N, Vrinten P, Bauer J, Zank T, Cirpus P, Heinz E, Qiu X (2005) Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat Biotechnol 23:1013–1017

    Article  PubMed  CAS  Google Scholar 

  35. Chen R, Matsui K, Ogawa M, Oe M, Ochiai M, Kawashima H, Sakuradani E, Shimizu S, Ishimoto M, Hayashi M, Murooka Y, Tanaka Y (2006) Expression of Δ6, Δ5 desaturase and GLELO elongase genes from Mortierella alpina for production of arachidonic acid in soybean [Glycine max (L.) Merrill] seeds. Plant Sci 170:399–406

    Article  CAS  Google Scholar 

  36. Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205

    PubMed  CAS  Google Scholar 

  37. Solovchenko AE, Khozin-Goldberg I, Cohen Z, Merzlyak MN (2008) Carotenoid-to-chlorophyll ratio as a proxy for assay of total fatty acids and arachidonic acid content in the green microalga Parietochloris incisa. J Appl Phycol 21:361–366

    Article  CAS  Google Scholar 

  38. Bekesiova I, Nap JP, Mlynarova L (1999) Isolation of high quality DNA and RNA from leaves of the carnivorous plant Drosera rotundifolia. Plant Mol Biol Rep 17:269–277

    Article  CAS  Google Scholar 

  39. Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360

    Article  PubMed  CAS  Google Scholar 

  40. Christie WW (2003) The analysis of fatty acids. In: Christie WW (ed) Lipid analysis. Isolation, separation, identification and structural analysis of lipids, vol. 15, 3rd edn. The Oily Press, Bridgewater, pp 205–225

    Google Scholar 

  41. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    PubMed  CAS  Google Scholar 

  42. Cohen Z, Didi S, Heimer YM (1992) Overproduction of γ-linolenic and eicosapentaenoic acids by algae. Plant Physiol 98:569–572

    Article  PubMed  CAS  Google Scholar 

  43. Iskandarov U, Khozin-Goldberg I, Ofir R, Cohen Z (2009) Cloning and characterization of the Δ6 polyunsaturated fatty acid elongase from the green microalga Parietochloris incisa. Lipids 44:545–554

    Article  PubMed  CAS  Google Scholar 

  44. Los DA, Murata N (1998) Structure and expression of fatty acid desaturases. Biochim Biophys Acta 1394:3–15

    PubMed  CAS  Google Scholar 

  45. Sakuradani E, Kobayashi M, Ashikari T, Shimizu S (1999) Identification of delta12-fatty acid desaturase from arachidonic acid-producing Mortierella fungus by heterologous expression in the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzae. Eur J Biochem 261:812–820

    Article  PubMed  CAS  Google Scholar 

  46. Sugase Y, Hirono M, Kindle KL, Kamiya R (1996) Cloning and characterization of the actin-encoding gene of Chlamydomonas reinhardtii. Gene 168:117–121

    Article  PubMed  CAS  Google Scholar 

  47. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  48. Schneiter R, Daum G (2008) Analysis of yeast lipids. In: Wei X (ed) Yeast protocols, methods in molecular biology, vol 313. Humana Press, Totowa, pp 75–84

    Chapter  Google Scholar 

  49. Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol 49:611–641

    Article  PubMed  CAS  Google Scholar 

  50. Knutzon DS, Thurmond JM, Huang YS, Chaudhary S, Bobik EG Jr, Chan GM, Kirchner SJ, Mukerji P (1998) Identification of Δ5-desaturase from Mortierella alpina by heterologous expression in bakers’ yeast and canola. J Biol Chem 273:29360–29366

    Article  PubMed  CAS  Google Scholar 

  51. Suga K, Honjoh K, Furuya N, Shimizu H, Nishi K, Shinohara F, Hirabaru Y, Maruyama I, Miyamoto T, Hatano S, Iio M (2002) Two low-temperature-inducible Chlorella genes for Δ12 and ω-3 Fatty Acid Desaturase (FAD): isolation of Δ12 and ω-3 fad cDNA clones, expression of Δ12 fad in Saccharomyces cerevisiae, and expression of ω-3 fad in Nicotiana tabacum. Biosci Biotechnol Biochem 66:1314–1327

    Article  PubMed  CAS  Google Scholar 

  52. Sayanova O, Shewry PR, Napier JA (1999) Histidine-41 of the cytochrome b5 domain of the borage Δ6 fatty acid desaturase is essential for enzyme activity. Plant Physiol 121:641–646

    Article  PubMed  CAS  Google Scholar 

  53. Guillou H, D’Andrea S, Rioux V, Barnouin R, Dalaine S, Pedrono F, Jan S, Legrand P (2004) Distinct roles of endoplasmic reticulum cytochrome b5 and fused cytochrome b5-like domain for rat Δ6-desaturase activity. J Lipid Res 45:32–40

    Article  PubMed  CAS  Google Scholar 

  54. Lu Y, Chi X, Yang Q, Li Z, Liu S, Gan Q, Qin S (2009) Molecular cloning and stress-dependent expression of a gene encoding D12-fatty acid desaturase in the Antarctic microalga Chlorella vulgaris NJ-7. Extremophiles 13:875–884

    Article  PubMed  CAS  Google Scholar 

  55. Tripodi KEJ, Buttigliero LV, Altabe SG, Uttaro AD (2006) Functional characterization of front-end desaturases from trypanosomatids depicts the first polyunsaturated fatty acid biosynthetic pathway from a parasitic protozoan. FEBS J 273:271–280

    Article  PubMed  CAS  Google Scholar 

  56. Petrie JR, Liu Q, Mackenzie AM, Shrestha P, Mansour MP, Robert SS, Frampton DF, Blackburn SI, Nichols PD, Singh SP (2009) Isolation and characterisation of a high-efficiency desaturase and elongases from microalgae for transgenic LC-PUFA production. Mar Biotechnol. doi:10.1007/s10126-009-9230-1

  57. Sayanova O, Beaudoin F, Michaelson VL, Shewry RP, Napier JA (2003) Identification of Primula fatty acid Δ6-desaturases with n-3 substrate preference. FEBS Lett 542:100–104

    Article  PubMed  CAS  Google Scholar 

  58. Zheng XZ, Ding ZK, Xu YQ, Monroig O, Morais S, Tocher DR (2009) Physiological roles of fatty acyl desaturases and elongases in marine fish: Characterisation of cDNA of fatty acyl Δ6 desaturase and elovl5 elongase of cobia (Rachycentron canadum). Aquaculture 290:122–131

    Article  CAS  Google Scholar 

  59. Kajikawa M, Yamato KT, Kohzu Y, Shoji S, Matsui K, Tanaka Y, Sakai Y, Fukuzawa H (2006) A front-end desaturase from Chlamydomonas reinhardtii produces pinolenic and coniferonic acids by omega13 desaturation in methylotrophic yeast and tobacco. Plant Cell Physiol 47:64–73

    Article  PubMed  CAS  Google Scholar 

  60. Girke T, Schimdt H, Zähringer U, Reski R, Heinz E (1998) Identification of a novel Δ6-acyl-group desaturase by targeted gene disruption in Physcomitrella patens. Plant J 15:39–48

    Article  PubMed  CAS  Google Scholar 

  61. Hong H, Dalta N, Reed DW, Covello PS, MacKenzie SL, Qiu X (2002) High-level production of γ-linolenic acid in Brassica juncea using a Δ6 desaturase from Pythium irregulare. Plant Physiol 129:354–362

    Article  PubMed  CAS  Google Scholar 

  62. Sayanova O, Davies GM, Smith MA, Griffiths G, Stobart AK, Shewry PR, Napier JA (1999) Accumulation of Δ6-unsaturated fatty acids in transgenic tobacco plants expressing a Δ6-desaturase from Borago officinalis. J Exp Bot 50:1647–1652

    Article  CAS  Google Scholar 

  63. Domergue F, Abbadi A, Ott C, Zank TK, Zähringer U, Heinz E (2003) Acyl carriers used as substrates by the desaturases and elongases involved in very long-chain polyunsaturated fatty acids biosynthesis reconstituted in yeast. J Biol Chem 278:35115–35126

    Article  PubMed  CAS  Google Scholar 

  64. Cho HP, Nakamura M, Clarke SD (1999) Cloning, expression, and fatty acid regulation of the human Δ5 desaturase. J Biol Chem 274:37335–37339

    Article  PubMed  CAS  Google Scholar 

  65. Bigogno C, Khozin-Goldberg I, Cohen Z (2002) Accumulation of arachidonic acid-rich triacylglycerols in the microalga Parietochloris incisa (Trebouxiophyceae, Chlorophyta). Phytochemistry 60:135–143

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Mrs. Shoshana Didi-Cohen for the dedicated technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inna Khozin-Goldberg.

Additional information

GenBank accession numbers for PiDes12, PiDes6 and PiDes5 and a partial sequence of actin gene of P. incisa are GU390531, GU390532, GU390533 and FJ548973.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 13 kb)

About this article

Cite this article

Iskandarov, U., Khozin-Goldberg, I. & Cohen, Z. Identification and Characterization of Δ12, Δ6, and Δ5 Desaturases from the Green Microalga Parietochloris incisa . Lipids 45, 519–530 (2010). https://doi.org/10.1007/s11745-010-3421-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-010-3421-4

Keywords

Navigation