Skip to main content
Log in

Use of fluorescent reporter genes in olive (Olea europaea L.) transformation

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Fluorescent proteins (FPs) can be used for different purposes in plant transformation studies such as the evaluation and improvement of transformation parameters or the isolation of transgenic cells in the absence of selective agents. In this research, the applicability of green (GFP) and red (DsRed) fluorescent proteins in olive transformation has been investigated. Olive embryogenic callus was transformed with Agrobacterium tumefaciens AGL1 strain carrying pXK7FNF2 (harbouring the gfp gene), pXK7RNR2 (DsRed), or pXK7S*NF2 (gfp and β-glucuronidase) binary plasmids. After 3 months of selection in the presence of paromomycin, several resistant calli were recovered for each construct, obtaining transformation rates in the range of 2–8%. The expression of FPs was studied during the different stages of olive plant regeneration using epi-fluorescence and confocal laser scanning microscopy. GFP from pXK7SN*F2 plasmid could be easily detected in olive somatic embryos (SE) during proliferation whereas SE transformed with pXK7FNF2 showed weak GFP signal. After embryo conversion, plants transformed with both vectors were analysed, but GFP could be detected neither in leaves nor in roots. By contrast, DsRed was highly expressed in SE and could also be visualized in leaf and root tissues of regenerated plants using confocal laser microscopy and epi-fluorescence zoom microscope, respectively. In addition, pXK7RNR2 was used to transform a different olive embryogenic line, detecting DsRed expression in SE transformed from this genotype. These results show that FPs can be a useful tool in genetic transformation of olive embryogenic cells, being DsRed gene more useful than gfp for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Álvarez R, Alonso P, Cortizo M, Celestino C, Hernández I, Toribio M, Ordás RJ (2004) Genetic transformation of selected mature cork oak (Quercus suber L.) trees. Plant Cell Rep 23:218–223

    Article  Google Scholar 

  • Bevis BJ, Glick BS (2002) Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat Biotechnol 20(1):83–87. https://doi.org/10.1038/nbt0102-83

    Article  CAS  PubMed  Google Scholar 

  • Bhaskar PB, Venkateshwaran M, Wu L, Ané J-M, Jiang J (2009) Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato. PLoS One 4(6):e5812. https://doi.org/10.1371/journal.pone.0005812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buenrostro-Nava M, Ling P (2006) Comparative analysis of 35S and lectin promoters in transgenic soybean tissue using an automated image acquisition system and image analysis. Plant Cell Rep 25:920–926

    Article  CAS  Google Scholar 

  • Cañas L, Benbadis A (1988) In vitro plant regeneration from cotyledon fragments of the olive tree (Olea europaea L.). Plant Sci 54:65–74

    Article  Google Scholar 

  • Cerezo S, Mercado JA, Pliego-Alfaro F (2011) An efficient regeneration system via somatic embryogenesis in olive. Plant Cell Tissue Organ Cult 106(2):337–344. https://doi.org/10.1007/s11240-011-9926-6

    Article  CAS  Google Scholar 

  • Clavero-Ramírez I, Pliego-Alfaro F (1990) Germinación in vitro de embriones maduros de olivo (Olea europaea). Actas de Horticultura 1:512–516

    Google Scholar 

  • Corredoira E, Valladares S, Allona I, Aragoncillo C, Vieitez AM, Ballester A (2012) Genetic transformation of European chestnut somatic embryos with a native thaumatin-like protein (CsTL1) gene isolated from Castanea sativa seeds. Tree Physiol 32:1389–1402

    Article  CAS  Google Scholar 

  • Duque AS, de Sousa Araújo S, Cordeiro MA, Santos DM, Fevereiro MP (2007) Use of fused gfp and gus reporters for the recovery of transformed Medicago truncatula somatic embryos without selective pressure. Plant Cell Tissue Organ Cult 90(3):325–330

    Article  CAS  Google Scholar 

  • Grebenok R, Lambert G (1997) Characterization of the targeted nuclear accumulation of GFP within the cells of transgenic plants. Plant J 12:685–696

    Article  CAS  Google Scholar 

  • Hofgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16(20):9877–9877. https://doi.org/10.1093/nar/16.20.9877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hraška M, Rakouský S, Čurn V (2006) Green fluorescent protein as a vital marker for non-destructive detection of transformation events in transgenic plants. Plant Cell Tissue Organ Cult 86(3):303–318. https://doi.org/10.1007/s11240-006-9131-1

    Article  CAS  Google Scholar 

  • Jach G, Binot E, Frings S, Luxa K, Schell J (2001) Use of red fluorescent protein from Discosoma sp. (dsRED) as a reporter for plant gene expression. Plant J 28(4):483–491. https://doi.org/10.1046/j.1365-313X.2001.01153.x

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Liu G, Zhu H, Yang X, Zhang X (2012) Transformation of Upland cotton (Gossypium hirsutum L.) with gfp gene as a visual marker. J Integr Agric 11:910–919

    Article  CAS  Google Scholar 

  • Karimi M, Bleys A, Vanderhaeghen R, Hilson P (2007) Building blocks for plant gene assembly. Plant Physiol 145(4):1183–1191. https://doi.org/10.1104/pp.107.110411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan T, Reddy VS, Leelavathi S (2010) High-frequency regeneration via somatic embryogenesis of an elite recalcitrant cotton genotype (Gossypium hirsutum L.) and efficient Agrobacterium-mediated transformation. Plant Cell Tissue Organ Cult 101(3):323–330. https://doi.org/10.1007/s11240-010-9691-y

    Article  Google Scholar 

  • Kim C, Chung J, Park S, Burrell A, Kamo K, Byrne D (2004) Agrobacterium tumefaciens-mediated transformation of Rosa hybrida using the green fluorescent protein (GFP) gene. Plant Cell Tissue Organ Cult 78(2):107–111

    Article  CAS  Google Scholar 

  • Kole C (ed) (2007) Genome mapping and molecular breeding in plants. Springer, Heidelberg

    Google Scholar 

  • Lambardi M, Benelli C, Amorosi S, Branca C, Caricato G, Rugini E (1999) Microprojectlie-DNA delivery in somatic embryos of olive (Olea europaea L.). Acta Hortic 474:505–509

    Article  CAS  Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation–competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9(10):963–967. https://doi.org/10.1038/nbt1091-963

    Article  CAS  PubMed  Google Scholar 

  • Leclercq J, Lardet L, Martin F, Chapuset T (2010) The green fluorescent protein as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation in Hevea brasiliensis (Müll. Arg). Plant Cell Rep 29:513–522

    Article  CAS  Google Scholar 

  • Li ZT, Jayasankar S, Gray D (2001) Expression of a bifunctional green fluorescent protein (GFP) fusion marker under the control of three constitutive promoters and enhanced derivatives in transgenic grape (Vitis vinifera). Plant Sci 160(5):877–887

    Article  CAS  Google Scholar 

  • Li J, Brunner AM, Meilan R, Strauss SH (2009) Stability of transgenes in tress: expression of two reporter genes in poplar over three field seasons. Tree Physiol 29:299–312

    Article  CAS  Google Scholar 

  • Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17(10):969–973. https://doi.org/10.1038/13657

    Article  CAS  PubMed  Google Scholar 

  • Maximova SN, Miller C, Antúnez de Mayolo G, Pishak S, Young A, Guiltinan MJ (2003) Stable transformation of Theobroma cacao L. and influence of matrix attachment regions on GFP expression. Plant Cell Rep 21(9):872–883. https://doi.org/10.1007/s00299-003-0596-7

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Mußmann V, Serek M (2011) Selection of transgenic Petunia plants using the green fluorescent protein (GFP). Plant Cell Tissue Organ Cult 107(3):483–492. https://doi.org/10.1007/s11240-011-9998-3

    Article  CAS  Google Scholar 

  • Nishizawa K, Kita Y, Kitayama M, Ishimoto M (2006) A red fluorescent protein, DsRed2, as a visual reporter for transient expression and stable transformation in soybean. Plant Cell Rep 25(12):1355–1361. https://doi.org/10.1007/s00299-006-0210-x

    Article  CAS  PubMed  Google Scholar 

  • Orinos T, Mitrakos K (1991) Rhizogenesis and somatic embryogenesis in calli from wild olive (Olea europaea var. sylvestris (Miller) Lehr) mature zygotic embryos. Plant Cell Tissue Organ Cult 27(2):183–187. https://doi.org/10.1007/BF00041288

    Article  Google Scholar 

  • Palomo-Ríos E, Cerezo S, Mercado JA, Pliego-Alfaro F (2016) Agrobacterium-mediated transformation of avocado (Persea americana Mill.) somatic embryos with fluorescent marker genes and optimization of transgenic plant recovery. Plant Cell Tissue Organ Cult 128(2):447–455

    Article  Google Scholar 

  • Pérez-Barranco G, Torreblanca R, Padilla IMG, Sánchez-Romero C, Pliego-Alfaro F, Mercado JA (2009) Studies on genetic transformation of olive (Olea europaea L.) somatic embryos: I. Evaluation of different aminoglycoside antibiotics for nptII selection; II. Transient transformation via particle bombardment. Plant Cell Tissue Organ Cult 97(3):243–251. https://doi.org/10.1007/s11240-009-9520-3

    Article  CAS  Google Scholar 

  • Pérez-Jiménez F, Ruano J, Perez Martinez P, Lopez Segura F, López-Miranda J (2007) The influence of olive oil on human health: not a question of fat alone. Mol Nutr Food Res 51(10):1199–1208

    Article  Google Scholar 

  • Ribas AF, Dechamp E, Champion A, Bertrand B, Combes M-C, Verdeil J-L, Lapeyre F, Lashermes P, Etienne H (2011) Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures. BMC Plant Biol 11(1):92–117

    Article  CAS  Google Scholar 

  • Rugini E, Caricato G (1995) Somatic embryogenesis and plant recovery from mature tissues of olive cultivars (Olea europaea L.) “Canino” and “Moraiolo”. Plant Cell Rep 14:257–260

    Article  CAS  Google Scholar 

  • Stewart CN (2006) Go with the glow: fluorescent proteins to light transgenic organisms. Trends Biotechnol 24:155–162

    Article  CAS  Google Scholar 

  • Torreblanca R, Cerezo S, Palomo-Ríos E, Mercado JA, Pliego-Alfaro F (2010) Development of a high throughput system for genetic transformation of olive (Olea europaea L.) plants. Plant Cell Tissue Organ Cult 103(1):61–69. https://doi.org/10.1007/s11240-010-9754-0

    Article  CAS  Google Scholar 

  • Verkhusha V, Kuznetsova I, Stepanenko O, Zaraisky AG, Shavlovsky M, Turoverov K, Uversky V (2003) High stability of Discosoma DsRed as compared to Aequorea EGFP. Biochem 42:7879–7884

    Article  CAS  Google Scholar 

  • Vidoy-Mercado I, Imbroda-Solano I, Pliego-Alfaro F, Barceló-Muñoz A (2012) Differential in vitro behaviour of the Spanish olive (Olea europaea L.) cultivars “Arbequina” and “Picual”. Acta Hort 949:27–30

    Article  Google Scholar 

  • Wenck A, Pugieux C, Turner M, Dunn M, Stacy C (2003) Reef-coral proteins as visual, non-destructive reporters for plant transformation. Plant Cell Rep 22:244–251

    Article  CAS  Google Scholar 

  • Zhang B, Rapolu M, Huang L, Su WW (2011) Coordinate expression of multiple proteins in plant cells by exploiting endogenous kex2p-like protease activity. Plant Biotechnol J 9(9):970–981. https://doi.org/10.1111/j.1467-7652.2011.00607.x

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Chandrasekharan M (2004) High rooting frequency and functional analysis of GUS and GFP expression in transgenic Medicago truncatula A17. New Phytol 162:813–822

    Article  CAS  Google Scholar 

  • Zhou X, Carranco R, Vitha S, Hall TC (2005) The dark side of green fluorescent protein. New Phytol 168(2):313–322. https://doi.org/10.1111/j.1469-8137.2005.01489.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Grant P11-AGR-7992, Consejería de Economía y Conocimiento, Junta de Andalucía, Spain. Sinda Ben Mariem had a fellowship from Instituto Agronómico Mediterráneo de Zaragoza, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Palomo-Ríos.

Additional information

Communicated by L. Bavaresco.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerezo, S., Palomo-Ríos, E., Ben Mariem, S. et al. Use of fluorescent reporter genes in olive (Olea europaea L.) transformation. Acta Physiol Plant 41, 49 (2019). https://doi.org/10.1007/s11738-019-2839-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-019-2839-4

Keywords

Navigation