Skip to main content
Log in

Physiological alterations due to field salinity stress in melon (Cucumis melo L.)

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

This study was aimed to assess physiological responses of melon (Cucumis melo L.) cultivars to salinity stress under field conditions. Seventeen melon cultivars including 16 widely distributed native and one exotic (‘Galia’) were subjected to 2-year (2014–2015) field salinity stress. Leaf relative water content (RWC), membrane stability index (MSI), pigments [chlorophyll a, b, total chlorophyll (TChl), carotenoid (Car) and their ratios], malondialdehyde (MDA), H2O2 content, proline content (Pro), total soluble sugar content (TSC), salinity tolerance and susceptibility indices as well as yield were evaluated. The results of combined analysis of variance showed significant genotypic variation for all the traits and significant effect of salinity stress on all the traits with the exception of Chla/Chlb and TChl/Car ratios. Overall, field salinity stress caused an increase in leaf MDA, H2O2, Chla, Chlb, TChl, Car, Pro and TSC and caused a reduction in leaf MSI and RWC as well as yield. The results of correlation coefficients showed that accumulation of osmolytes (proline and TSC) led to an increase in RWC and a decrease in MDA contents. In addition, the results of multiple regression analysis showed that leaf MDA, TSC, MSI and Chla contents were the most important predictors of yield justifying 72% total variation of yield under saline conditions. These results may highlight a dynamic interplay among biomarkers for lipid peroxidation (MDA), sugar osmolytes (TSC) and photosynthetic pigment (Chla) to maintain cell viability and cell wall integrity under salinity stress conditions in melon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arzani A (2008) Improving salinity tolerance in crop plants: a biotechnological view. In Vitro Cell Dev Biol Plant 44:373–383. https://doi.org/10.1007/s11627-008-9157-7

    Article  CAS  Google Scholar 

  • Arzani A, Ashraf M (2016) Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Crit Rev Plant Sci 35:146–189. https://doi.org/10.1080/07352689.2016.1245056

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16. https://doi.org/10.1016/j.plantsci.2003.10.024

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190. https://doi.org/10.1007/s11099-013-0021-6

    Article  CAS  Google Scholar 

  • Askari E, Ehsanzadeh P (2015) Drought stress mitigation by foliar application of salicylic acid and their interactive effects on physiological characteristics of fennel (Foeniculum vulgare Mill) genotypes. Acta Physiol Plant 37:4. https://doi.org/10.1007/s11738-014-1762-y

    Article  Google Scholar 

  • Bahrami F, Arzani A, Karimi V (2014) Evaluation of yield-based drought tolerance indices for screening safflower genotypes. Agron J 106:1219–1224

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. https://doi.org/10.1134/S1021443709040104

    Article  CAS  Google Scholar 

  • Bazrafshan AH, Ehsanzadeh P (2014) Growth, photosynthesis and ion balance of sesame (Sesamum indicum L.) genotypes in response to NaCl concentration in hydroponic solutions. Photosynthetica 52:134–147. https://doi.org/10.1007/s11099-014-0015-z

    Article  CAS  Google Scholar 

  • Botia P, Navarro JM, Cerda A, Martinez V (2005) Yield and fruit quality of two melon cultivars irrigated with saline water at different stages of development. Eur J Agron 23:243–253. https://doi.org/10.1016/j.eja.2004.11.003

    Article  Google Scholar 

  • Chen M (2014) Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. Annu Rev Biochem 83:317–340

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Ren J, Shi H et al (2013) Physiological and molecular responses to salt stress in wild emmer and cultivated wheat. Plant Mol Biol Rep 31:1212–1219

    Article  CAS  Google Scholar 

  • DuBois M, Gilles KA, Hamilton JK et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • FAO (2017) Food and Agricultural Organization of the United Nations: FAOSTAT. Accessed online at: http://www.fao.org/faostat/en/#data/QC

  • Farooq M, Wahid A, Kobayashi N et al (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212. https://doi.org/10.1051/agro:2008021

    Article  Google Scholar 

  • Fernandez GCJ (1992) Effective selection criteria for assessing plant stress tolerance. In: Kuo CC (ed) Adaptation to food crops to temperature and water stress: Proceedings of an international symposium, Shanhua, Taiwan. 13–18 Aug 1992. Asian Vegetable Research and Development Center, Bangkok, Thailand, pp 257–270

  • Fischer RA, Maurer R (1978) Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust J Agric Res 29:897–912

    Article  Google Scholar 

  • Franco JA, Fernández JA, Bañón S, González A (1997) Relationship between the effects of salinity on seedling leaf area and fruit yield of six muskmelon cultivars. HortScience 32:642–644

    Google Scholar 

  • García-Valenzuela X, García-Moya E, Rascón-Cruz Q et al (2005) Chlorophyll accumulation is enhanced by osmotic stress in graminaceous chlorophyllic cells. J Plant Physiol 162:650–661

    Article  PubMed  Google Scholar 

  • Huang CH, Zong L, Buonanno M et al (2012) Impact of saline water irrigation on yield and quality of melon (Cucumis melo cv. Huanghemi) in northwest China. Eur J Agron 43:68–76

    Article  Google Scholar 

  • Javed MT, Akram MS, Tanwir K, Chaudhary HJ, Ali Q, Stoltz E, Lindberg S (2017) Cadmium spiked soil modulates root organic acids exudation and ionic contents of two differentially Cd tolerant maize (Zea mays L.) cultivars. Ecotoxicol Environ Saf 141:216–225

    Article  CAS  PubMed  Google Scholar 

  • Karimi S, Arzani A, Saeidi G (2014) Differential response of ion and osmolyte accumulation to salinity stress in salt-tolerant and salt-sensitive seedlings of safflower (Carthamus tinctorius L.). Res Crop 15:802–809

    Article  Google Scholar 

  • Kavas M, Baloglu MC, Akca O et al (2013) Effect of drought stress on oxidative damage and antioxidant enzyme activity in melon seedlings. Turk J Biol 37:491–498. https://doi.org/10.3906/biy-1210-55

    Article  CAS  Google Scholar 

  • Kaya C, Tuna AL, Ashraf M, Altunlu H (2007) Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate. Environ Exp Bot 60:397–403. https://doi.org/10.1016/j.envexpbot.2006.12.008

    Article  CAS  Google Scholar 

  • Khedr AHA, Abbas MA, Wahid AAA et al (2003) Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J Exp Bot 54:2553–2562

    Article  CAS  PubMed  Google Scholar 

  • Kiani R, Arzani A, Habibi F (2015) Physiology of salinity tolerance in Aegilops cylindrica. Acta Physiol Plant 37:1–10. https://doi.org/10.1007/s11738-015-1881-0

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV–VIS. Curr Protoc Food Anal Chem F4.3.1–F4.3.8. https://doi.org/10.1002/0471142913.faf0403s01

  • Lv SL, Zhang KW, Gao Q et al (2008) Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant Cell Physiol 49:1150–1164

    Article  CAS  PubMed  Google Scholar 

  • Mansour MMF (2014) The plasma membrane transport systems and adaptation to salinity. J Plant Physiol 171:1787–1800

    Article  CAS  PubMed  Google Scholar 

  • Mansour MMF, Ali EF (2017) Evaluation of proline functions in saline conditions. Phytochemistry 140:52–68. https://doi.org/10.1016/j.phytochem.2017.04.016

    Article  CAS  PubMed  Google Scholar 

  • Mendlinger S, Fossen M (1993) Flowering, vegetative growth, yield, and fruit quality in muskmelons under saline conditions. J Am Soc Hortic Sci 118:868–872

    Google Scholar 

  • Moradmand R, Arzani A, Saeidi G (2011) Plant regeneration via somatic embryogenesis in three Iranian Cucumis melo L. genotypes. J Crop Improv 25:183–190. https://doi.org/10.1080/15427528.2011.547399

    Article  CAS  Google Scholar 

  • Rezaei M, Arzani A, Saeidi G, Karami M (2017) Physiology of salinity tolerance in Bromus danthoniae genotypes originated from saline and non-saline areas of West Iran. Crop Pasture Sci 68:92–99

    Article  CAS  Google Scholar 

  • Ritchie SW, Nguyen HT, Holaday AS (1990) Leaf water content and gas-exchange parameters of two wheat genotypes differing in drought resistance. Crop Sci 30:105–111

    Article  Google Scholar 

  • Rivelli AR, De Maria S, Pizza S, Gherbin P (2010) Growth and physiological response of hydroponically-grown sunflower as affected by salinity and magnesium levels. J Plant Nutr 33:1307–1323. https://doi.org/10.1080/01904167.2010.484092

    Article  CAS  Google Scholar 

  • Romero L, Belakbir A, Ragala L, Ruiz JM (1997) Response of plant yield and leaf pigments to saline conditions: effectiveness of different rootstocks in melon plants (Cucumis melo L). Soil Sci Plant Nutr 43:855–862. https://doi.org/10.1080/00380768.1997.10414652

    Article  Google Scholar 

  • Sairam RK, Rao KV, Srivastava G (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163:1037–1046. https://doi.org/10.1016/S0168-9452(02)00278-9

    Article  CAS  Google Scholar 

  • SAS Institute (2011) Base SAS 9.3 procedures guide. SAS Institute Inc, Cary

    Google Scholar 

  • Sevengor S, Yasar F, Kusvuran S, Ellialtioglu S (2011) The effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidative enzymes of pumpkin seedling. Afr J Agric Res 6:4920–4924. https://doi.org/10.5897/AJAR11.668

    Google Scholar 

  • Sivritepe HÖ, Sivritepe N, Eriş A, Turhan E (2005) The effects of NaCl pre-treatments on salt tolerance of melons grown under long-term salinity. Sci Hortic 106:568–581. https://doi.org/10.1016/j.scienta.2005.05.011

    Article  CAS  Google Scholar 

  • Stevens J, Senaratna T, Sivasithamparam K (2006) Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regul 49:77–83

    CAS  Google Scholar 

  • Sudhir P, Murthy SDS (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42:481–486

    Article  CAS  Google Scholar 

  • Taulavuori E, Hellström E, Taulavuori K, Laine K (2001) Comparison of two methods used to analyse lipid peroxidation from Vaccinium myrtillus (L.) during snow removal, reacclimation and cold acclimation. J Exp Bot 52:2375–2380

    Article  CAS  PubMed  Google Scholar 

  • Tedeschi A, Lavini A, Riccardi M, Pulvento C, Andria R (2011) Melon crops (Cucumis melo L., cv. Tendral) grown in a Mediterranean environment under saline-sodic conditions: part I. Yield and quality. Agric Water Manag 98:1329–1338. https://doi.org/10.1016/j.agwat.2011.04.007

    Article  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari JK, Munshi AD, Kumar R et al (2010) Effect of salt stress on cucumber: Na+–K+ ratio, osmolyte concentration, phenols and chlorophyll content. Acta Physiol Plant 32:103–114. https://doi.org/10.1007/s11738-009-0385-1

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang XC, Chang LL, Wang BC et al (2013) Comparative proteomics of Thellungiella halophila leaves from plants subjected to salinity reveals the importance of chloroplastic starch and soluble sugars in halophyte salt tolerance. Mol Cell Proteom 12:2174–2195

    Article  CAS  Google Scholar 

  • Ziaf K, Amjad M, Pervez MA et al (2009) Evaluation of different growth and physiological traits as indices of salt tolerance in hot pepper (Capsicum annuum L.). Pak J Bot 41:1797–2009

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs. M. Poursiahbidi and M. Mirzaei-Heidari for their onsite assistance with seed collection of ‘Gargar-1’ and ‘Garga-2’ dryland cultivars. This work was partially supported by Grant no. 93-05-18/9327 from the Isfahan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Arzani.

Additional information

Communicated by G. Montanaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akrami, M., Arzani, A. Physiological alterations due to field salinity stress in melon (Cucumis melo L.). Acta Physiol Plant 40, 91 (2018). https://doi.org/10.1007/s11738-018-2657-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2657-0

Keywords

Navigation