Skip to main content
Log in

Improved salt tolerance in a wheat stay-green mutant tasg1

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Salt stress inhibited the growth of both tasg1 and wild-type (WT) wheat seedlings, but the inhibition in tasg1 plants was relatively weaker than that of WT. Compared to the WT, the chlorophyll content, thylakoid membrane polypeptides, Hill reaction activity, actual photochemical efficiency of PSII (ΦPSII), and Mg2+- and Ca2+-ATPase activities were higher in tasg1 under salt stress. At the same time, the photosynthetic activity of the tasg1 was significantly higher than that of WT. In addition, tasg1 plants displayed relatively less accumulation of reactive oxygen species and oxidative damage accompanied by higher activity of some antioxidant enzymes, and the up-regulation of antioxidant genes further demonstrated the improvement of antioxidant activity in tasg1 under salt stress. Furthermore, tasg1 plants also showed relatively weaker Na+ fluorescence and lower Na+ content, but relatively higher content of K+ in their roots and shoots, and then, the roots of tasg1 plants enhanced net outward Na+ flux and a correspondingly increased net inward K+ flux during salt stress. This might be associated with the relatively higher activity of H+-ATPase in tasg1 plants. These results suggest that the improved antioxidant competence and Na+/K+ ion homeostasis play an important role in the enhanced salinity tolerance of tasg1 plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmad P, Abdel Latef AA, Hashem A, Abd Allah EF, Gucel S (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347

    PubMed  PubMed Central  Google Scholar 

  • Allu AD, Soja AM, Wu A, Szymanski J, Balazadeh S (2014) Salt stress and senescence: identification of cross-talk regulatory components. J Exp Bot 14:3993–4008

    Article  Google Scholar 

  • Atashi F, Modarressi A, Pepper MS (2015) The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev 24:1150–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrell AK, van Oosterom EJ, Mullet JE, George-Jaeggli B, Jordan DR (2014) Stay-green alleles individually enhance grain yield in sorghum under drought by modifying canopy development and water uptake patterns. New Phytol 203:817–830

    Article  PubMed  Google Scholar 

  • Causin HF, Marchetti CF, Pena LB, Gallego SM, Barneix AJ (2015) Down-regulation of catalase activity contributes to senescence induction in wheat leaves exposed to shading stress. Biol Plant 59:154–162

    Article  CAS  Google Scholar 

  • Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078

    Article  CAS  PubMed  Google Scholar 

  • Ding M, Hou P, Shen X, Wang M, Deng S (2010) Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt-resistant and salt sensitive poplar species. Plant Mol Biol 73:251–269

    Article  CAS  PubMed  Google Scholar 

  • Falhof J, Pedersen JT, Fuglsang AT, Palmgren M (2016) Plasma membrane H+-ATPase regulation in the center of plant physiology. Mol Plant 9:323–337

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:1

    Article  Google Scholar 

  • Han S, Wang CW, Wang WL, Jiang J (2014) Mitogen-activated protein kinase 6 controls root growth in Arabidopsis by modulating Ca2+-based Na+ flux in root cell under salt stress. J Plant Physiol 171:26–34

    Article  CAS  PubMed  Google Scholar 

  • Hazman M, Hause B, Eiche E, Nick P, Riemann M (2015) Increased tolerance to salt stress in OPDA-deficient rice ALLENE OXIDE CYCLASE mutants is linked to an increased ROS-scavenging activity. J Exp Bot 66:3339–3352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez JA, Jimenez A, Mullineaux P, Sevilla F (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ 23:853–862

    Article  CAS  Google Scholar 

  • Hui Z, Tian FX, Wang GK, Wang W (2012) The antioxidative defense system is involved in the delayed senescence in a wheat mutant tasg1. Plant Cell Rep 31:1073–1084

    Article  CAS  PubMed  Google Scholar 

  • Kang HH, Zhang M, Zhou SM, Guo QF, Chen FJ, Wu JJ, Wang W (2016) Overexpression of wheat ubiquitin gene, Ta-Ub2, improves abiotic stress tolerance of Brachypodium distachyon. Plant Sci 248:102–115

    Article  CAS  PubMed  Google Scholar 

  • Lang T, Sun H, Li N, Lu Y (2014) Multiple signaling networks of extracellular ATP, hydrogen peroxide, calcium, and nitric oxide in the mediation of root ion fluxes in secretor and non-secretor mangroves under salt stress. Aquat Bot 119:33–43

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Maathuis FJM, Ahmad I, Patishtan J (2014) Regulation of Na+ fluxes in plants. Front Plant Sci 5:467

    Article  PubMed  PubMed Central  Google Scholar 

  • Mansour MMF (2013) Plasma membrane permeability as an indicator of salt tolerance in plants. Biol Plant 57:1–10

    Article  CAS  Google Scholar 

  • Mäser P, Eckelman B, Vaidyanathan R (2002) Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Lett 531:157–161

    Article  PubMed  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nazar R, Iqbal N, Masood A, Syeed S (2011) Understanding the significance of sulfur in improving salinity tolerance in plants. Environ Exp Bot 70:80–87

    Article  CAS  Google Scholar 

  • Reczek CR, Chandel NS (2015) ROS-dependent signal transduction. Curr Opin Cell Biol 33:8–13

    Article  CAS  PubMed  Google Scholar 

  • Reddy PS, Jogeswar G, Rasineni GK, Maheswari M, Reddy AR (2015) Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiol Biochem 94:104–113

    Article  PubMed  Google Scholar 

  • Sairam PK, Srivastava GC (2002) Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci 162:897–904

    Article  CAS  Google Scholar 

  • Sairam RK, Rao KV, Srivastava GC (2002) Differential response of wheat genotypes to long-term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163:1037–1046

    Article  CAS  Google Scholar 

  • Shabala S, Cuin TA (2007) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    Article  Google Scholar 

  • Sui N, Li M, Liu XY, Wang N (2007) Response of xanthophyll cycle and chloroplastic antioxidant enzymes to chilling stress in tomato over-expressing glycerol-3-phosphate acyltransferase gene. Photosynthetic 45:447–454

    Article  CAS  Google Scholar 

  • Talaat NB, Shawky BT (2013) 24-Epibrassinolide alleviates salt-induced inhibition of productivity by increasing nutrients and compatible solutes accumulation and enhancing antioxidant system in wheat (Triticum aestivum L.). Acta Physiol Plant 35:729–740

    Article  CAS  Google Scholar 

  • Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51:329–337

    Article  CAS  PubMed  Google Scholar 

  • Tian FX, Gong JF, Zhang J, Wang W (2013) Enhanced stability of thylakoid membrane proteins and antioxidant competence contribute to drought stress resistance in the tasg1 wheat stay-green mutant. J Exp Bot 64:1509–1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WQ, Hao QQ, Tian FX, Li QX, Wang W (2016a) The stay-green phenotype of wheat mutant tasg1 is associated with altered cytokinin metabolism. Plant Cell Rep 35:585–599

    Article  PubMed  Google Scholar 

  • Wang WQ, Hao QQ, Tian FX, Wang W (2016b) Cytokinin-regulated sucrose metabolism in stay-green wheat phenotype. PLoS One 11:e0161351

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang WQ, Hao QQ, Wang WL, Li QX, Wang W (2017) The genetic characteristics in cytology and plant physiology of two wheat (Triticum aestivum) near isogenic lines with different freezing tolerances. Plant Cell Rep 36:1801–1814

    Article  CAS  PubMed  Google Scholar 

  • Wu HH, Shabala L, Liu XH, Azzarello E, Zhou MX, Pandolfi C (2015) Linking salinity stress tolerance with tissue-specific Na+ sequestration in wheat roots. Front Plant Sci 6:71

    PubMed  PubMed Central  Google Scholar 

  • Xia LJ, Yang LQ, Sun NL, Li J, Fang YJ, Wang YP (2016) Physiological and antioxidant enzyme gene expression analysis reveals the improved tolerance to drought stress of the somatic hybrid offspring of Brassica napus and Sinapis alba at vegetative stage. Acta Physiol Plant 38:88–97

    Article  Google Scholar 

  • Xu J, Yang J, Duan XG, Jiang YM, Zhang P (2014) Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz). BMC Plant Biol 14:208

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang M, Chen JC, Zhao J, Meng M (2014) Etanercept attenuates myocardial ischemia/reperfusion injury by decreasing inflammation and oxidative stress. PLoS One 9:e108024

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao ZX, Zhang GQ, Zhou SM, Ren YQ, Wang W (2017) The improvement of salt tolerance in transgenic tobacco by overexpression of wheat F-box gene TaFBA1. Plant Sci 259:71–85

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 31370304) and by Funds of Shandong “Double Tops”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Additional information

Communicated by J. Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 511 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Tian, F., Hao, Q. et al. Improved salt tolerance in a wheat stay-green mutant tasg1. Acta Physiol Plant 40, 39 (2018). https://doi.org/10.1007/s11738-018-2617-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2617-8

Keywords

Navigation