Skip to main content

Advertisement

Log in

First report about the identification and preliminary analysis of a partial sequence of dihydropyrimidine dehydrogenase (NADP+) in Thermopsis turcica during floral development using degenerate primers

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Thermopsis turcica Kit Tan, Vural & Küçüködük is an herbaceous perennial, endemic and listed as endangered species by IUCN in Turkey. This plant is noted for its unusual floral structure characterized by a 2–4 carpellary ovary. In this study, a DPD (NADP+)-like gene was partially sequenced for the first time in T. turcica. Since there is no previous molecular genetic information available for T. turcica, RT-PCR was performed using degenerate primers targeted to conserved sequences of WUS protein homologues from related legume species. Amplified cDNAs of the expected size were sequenced and analyzed using bioinformatics tools. The analysis strongly suggested that a 283 bp PCR product was part of a dihydropyrimidine dehydrogenase (NADP+)-like coding sequence with a Flavin mononucleotide binding domain. The putative gene was named Tt-DPD and the partial CDS submitted to the NCBI database (accession number KT182937). This gene has not been identified previously in T. turcica. The DPD (NADP+) enzyme is the rate-limiting step in pyrimidine degradation, which is essential for the biosynthesis of beta-alanine and pantothenates in plants; it has also been shown to be required for normal seed development in Arabidopsis. Expression of Tt-DPD was monitored by both endpoint and real-time RT-PCR. High expression of the identified gene was observed in the mid-developmental stage of the pistil of T. turcica. The findings presented here provide a starting point for understanding the roles of this gene in pyrimidine catabolism in T. turcica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Aa:

Amino acid(s)

AGE:

Agarose gel electrophoresis

BLAST:

Basic local alignment search tool

bp:

Base pair

C. arietinum :

Cicer arietinum

cDNA:

Complementary deoxyribonucleic acid

CDS:

Coding sequence

DPD:

Dihydropyrimidine dehydrogenase

5-FU:

5-Fluorouracil

L. japonicus :

Lotus japonicus

M. truncatula :

Medicago truncatula

NADP:

Nicotinamide-adenine dinucleotide phosphate

NCBI:

National Center for Biotechnology Information

NGBG:

Nezahat Gökyiğit Botanical Garden

ORF:

Open reading frame

PCR:

Polymerase chain reaction

P. vulgaris :

Phaseolus vulgaris

RT-PCR:

Reverse transcription polymerase chain reaction

TBE:

Tris–boric acid–EDTA buffer

T. turcica :

Thermopsis turcica

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Bäurle I, Laux T (2003) Apical meristems: the plant’s fountain of youth. BioEssays 25:961–970. doi:10.1002/bies.10341

    Article  PubMed  Google Scholar 

  • Bäurle I, Laux T (2005) Regulation of WUSCHEL transcription in the stem cell niche of the Arabidopsis shoot meristem. Plant Cell 17:2271–2280. doi:10.1105/tpc.105.032623

    Article  PubMed  PubMed Central  Google Scholar 

  • Benedito VA (2004) Flower development of Lilium longiflorum: characterization of MADS-box transcription factors, Dissertation. Wageningen University, Wageningen

    Google Scholar 

  • Brown EG, Turan Y (1995) Pyrimidine metabolism and secondary product formation; biogenesis of albizziine, 4-hydroxyhomoarginine and 2,3-diaminopropanoic acid. Phytochemistry 40:763–771

    Article  CAS  Google Scholar 

  • Cenkci S, Kargioglu M, Dayan S, Konuk M (2008) In vitro propagation of an endangered plant species, Thermopsis turcica (Fabaceae). Biologia (Bratisl) 63:652–657. doi:10.2478/s11756-008-0125-9

    Article  Google Scholar 

  • Cenkci S, Temel M, Kargioğlu M, Dayan S (2009) Propagation of endangered Thermopsis turcica Kit Tan, Vural & Küçüködük using conventional and in vitro techniques. Turk J Biol 33:327–333. doi:10.3906/biy-0811-1

    CAS  Google Scholar 

  • Chakauya E, Coxon KM, Whitney HM et al (2006) Pantothenate biosynthesis in higher plants: advances and challenges. Physiol Plant 126:319–329. doi:10.1111/j.1399-3054.2006.00683.x

    Article  CAS  Google Scholar 

  • Choob VV, Sinyushin A (2012) Flower and shoot fasciation: from phenomenology to the construction of models of apical meristem transformations. Russ J Plant Physiol 59:530–545. doi:10.1134/S1021443712040048

    Article  CAS  Google Scholar 

  • Cooke JWB, Bright R, Coleman MJ, Jenkins KP (2001) Process research and development of a dihydropyrimidine dehydrogenase inactivator: large-scale preparation of eniluracil using a Sonogashira coupling. Org Process Res Dev 267:10–13

    Google Scholar 

  • Cornelius S, Witz S, Rolletschek H, Torsten M (2011) Pyrimidine degradation influences germination seedling growth and production of Arabidopsis seeds. J Exp Bot 62:5623–5632. doi:10.1093/jxb/err251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dereeper A, Guignon V, Blanc G et al (2008) Phylogeny fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:465–469. doi:10.1093/nar/gkn180

    Article  Google Scholar 

  • Drozdetskiy A, Cole C, Procter J, Barton GJ (2015) JPred4: a protein secondary structure prediction server. Nucleic Acids Res. doi:10.1093/nar/gkv332

    PubMed  PubMed Central  Google Scholar 

  • Ekim T, Koyuncu M, Vural M et al (2000) Türkiye Bitkileri Kırmızı Kitabı, Eğrelti ve Tohumlu Bitkiler (Red Data Book of Turkish Plants, Pteridophyta and Spermatophyta). Barışcan Ofset, Ankara

    Google Scholar 

  • Endress PK (2014) Multicarpellate gynoecia in angiosperms: occurrence, development, organization and architectural constraints. Bot J Linn Soc 174:1–43

    Article  Google Scholar 

  • Hagen WR, Vanoni MA, Rosenbaum K, Schnackerz KD (2000) On the iron ± sulfur clusters in the complex redox enzyme dihydropyrimidine dehydrogenase. Eur J Biochem 267:3640–3646

    Article  CAS  PubMed  Google Scholar 

  • Harris BE, Song R, He Y-J et al (1988) Circadian rhythm of rat liver dihydropyrimidine dehydrogenase: possible relevance to fluoropyrimidine chemotherapy. Biochem Pharmacol 37:4759–4762

    Article  CAS  PubMed  Google Scholar 

  • Hidese R, Mihara H, Kurihara T, Esaki N (2011) Escherichia coli dihydropyrimidine dehydrogenase is a novel NAD-dependent heterotetramer essential for the production of 5,6-dihydrouracil. J Bacteriol 193:989–993. doi:10.1128/JB.01178-10

    Article  CAS  PubMed  Google Scholar 

  • IUCN (2009) Wild life in a chancing world, an analysis of the 2008 IUCN Red List of Threatened Species™. https://portals.iucn.org/library/sites/library/files/documents/RL-2009-001.pdf. Accessed 02 Dec 2016

  • Kafer C, Lan Z, Djoko S et al (2004) Regulation of pyrimidine metabolism in plants. Front Biosci 9:1611–1625

    Article  CAS  PubMed  Google Scholar 

  • Lu Z-H, Zhang R, Diasio RB (1993) Comparison of dihydropyrimidine dehydrogenase from human, rat, pig and cow liver: biochemical and immunological properties. Biochem Pharmacol 46:945–952

    Article  CAS  PubMed  Google Scholar 

  • Lucas S, Dogan E, Budak H (2011) TMPIT1 from wild emmer wheat: first characterisation of a stress-inducible integral membrane protein. Gene 483:22–28. doi:10.1016/j.gene.2011.05.003

    Article  CAS  PubMed  Google Scholar 

  • Mazus B, Buchowicz J (1968) Dihydropyrimidinase of pea plants; purification and properties. Acta Biochim Pol 15:327–337

    CAS  PubMed  Google Scholar 

  • Mcleod HL, Sluddenl J, Murray GI et al (1998) Characterization of dihydropyrimidine dehydrogenase in human colorectal tumours. Br J Cancer 77:461–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozdemir C, Dural H, Ertugrul K et al (2008) Morphology and anatomy of endemic Thermopsis turcica Kit Tan, Vural & Küçüködük. Bangladesh J Bot 37:105–114. doi:10.3329/bjb.v37i2.1714

    Google Scholar 

  • Özhayat N, Byfield A, Atay S (2005) Türkiye’nin 122 Önemli Bitki Alanı (Important Plant Areas in Turkey: 122 Key Botanical Sites). WWF-Türkiye (Doğal Hayatı Koruma Vakfı), Istanbul

    Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:16–21

    Article  Google Scholar 

  • Ramakers C, Ruijter JM, Lekanne Deprez RH, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66. doi:10.1016/S0304-3940(02)01423-4

    Article  CAS  PubMed  Google Scholar 

  • Raman SB, Rathinasabapathi B (2004) Pantothenate synthesis in plants. Plant Sci 167:961–968. doi:10.1016/j.plantsci.2004.06.019

    Article  CAS  Google Scholar 

  • Rose TM, Schultz ER, Henikoff JG et al (1998) Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Res 26:1628–1635. doi:10.1093/nar/26.7.1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenbaum K, Schaffrath B, Hagen WR et al (1997) Purification, characterization, and kinetics of porcine recombinant dihydropyrimidine dehydrogenase. Protein Expr Purif 10:185–191

    Article  CAS  PubMed  Google Scholar 

  • Schmitt U, Jahnke K, Rosenbaum K et al (1996) Purification and characterization of dihydropyrimidine dehydrogenase from Alcaligenes eutrophus. Arch Biochem Biophys 332:175–182

    Article  CAS  PubMed  Google Scholar 

  • Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. doi:10.1038/msb.2011.75

    PubMed  PubMed Central  Google Scholar 

  • Song J (2005) Genetic diversity and flowering in Clianthus and New Zealand Sophora (Fabaceae), Dissertation. Massey University, New Zealand

    Google Scholar 

  • Song J, Clemens J, Jameson PE (2008) Quantitative expression analysis of the ABC genes in Sophora tetraptera, a woody legume with an unusual sequence of floral organ development. J Exp Bot 59:247–259. doi:10.1093/jxb/erm305

    Article  CAS  PubMed  Google Scholar 

  • Song J, Clemens J, Jameson PE (2011) Expression of floral identity genes in Clianthus maximus during mass inflorescence abortion and floral development. Ann Bot 107:1501–1509. doi:10.1093/aob/mcr035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takenoue T, Kitayama J, Takei Y et al (2000) Characterization of dihydropyrimidine dehydrogenase on immunohisto- chemistry in colon carcinoma, and correlation between immunohisto-chemical score and protein level or messenger RNA expression. Ann Oncol 11:273–279

    Article  CAS  PubMed  Google Scholar 

  • Tekdal D, Cetiner S (2014) The determination of self-compabilitiy status of Thermopsis turcica through histological analysis. J Appl Biol Sci 8:64–67

    Google Scholar 

  • Tintemann H, Wasternack C, Helbing D et al (1987) Pyrimidine degradation in tomato cell suspension cultures and in Euglena gracilis-localization of enzymes. Comp Biochem Physiol 88:943–948

    Google Scholar 

  • Turan Y, Konuk M (1999) The effect of Uracil on the germination and growth of some leguminous plants. Turk J Bot 23:241–244

    Google Scholar 

  • Turan Y, Sinan O (2005) Purification and characterization of dihydropyrimidinase from Albizia julibrissin. Pak J Bot 37:299–306

    Google Scholar 

  • Walker JM (2011) Methods in molecular biology. Humana Press, New York

    Google Scholar 

  • Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78:203–209

    Article  CAS  PubMed  Google Scholar 

  • Zrenner R, Stitt M, Sonnewald U, Boldt R (2006) Pyrimidine and purine biosynthesis and degradation in plants. Annu Rev Plant Biol 57:805–836. doi:10.1146/annurev.arplant.57.032905.105421

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their appreciation to Nezahat Gökyiğit Botanical Garden for providing research materials for the study. The authors are grateful to Ali Nihat Gökyiğit and Prof.Dr. Adil Güner (Nezahat Gökyiğit Botanical Garden) for their support. The assistance of Burçin Çıngay (Garden Department of Nezahat Gökyiğit Botanical Garden) is greatly appreciated. This work was supported by the Ali Nihat Gökyiğit Foundation of Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Tekdal.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest. We certify that all persons who have made substantial contributions to this manuscript. We certify that the submitted original manuscript is not under review by any other journal. There is no financial interest to report.

Studies with human or animal research

This article does not contain any studies with human subjects or animals performed by any of the authors.

Additional information

Communicated by P. K. Nagar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11738_2017_2458_MOESM1_ESM.tiff

Fig. S1. Pairwise sequence alignment score between T. turcica and representative plant legumes; French bean (P. vulgaris), chickpea (C. arietinum), and barrel medic (M. truncatula) regarding DPD (NADP +) gene amplified by Tt-DPD primer pairs. Species and their GenBank accession numbers are described in Table 1 in the paper (TIFF 1428 kb)

11738_2017_2458_MOESM2_ESM.tiff

Fig. S2. Comparison of amino acid sequences of DPD (NADP +) in T. turcica and other representative plant legumes; French bean (P. vulgaris), chickpea (C. arietinum), and barrel medic (M. truncatula) using Muscle 3.8.31 program (http://www.phylogeny.fr/one_task.cgi?task_type=muscle). Identical and conserved amino acids are shaded. Species and their GenBank accession numbers are described in Table 1 in the paper (TIFF 991 kb)

11738_2017_2458_MOESM3_ESM.tiff

Fig. S3. DPD gene homologues used for multiple alignment and phylogenetic tree. ‘*,’ Identical amino acid residues (TIFF 4337 kb)

11738_2017_2458_MOESM4_ESM.tiff

Fig. S4. All fragments which cover the same region of the homologue gene were used for sequence analyzing (TIFF 9151 kb)

Fig. S5. Conceptual translation of the ORFs of the sequences described in Figure S4 (TIFF 1692 kb)

11738_2017_2458_MOESM6_ESM.tiff

Fig. S6. Comparison of amino acid sequences of DPD in Thermopsis turcica with the representative gene in Cicer arietinum using the technique mentioned in the paper (TIFF 1314 kb)

Fig. S7. Putative conserved domains in DPD protein in T. turcica (TIFF 394 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekdal, D., Lucas, S.J. & Cetiner, S. First report about the identification and preliminary analysis of a partial sequence of dihydropyrimidine dehydrogenase (NADP+) in Thermopsis turcica during floral development using degenerate primers. Acta Physiol Plant 39, 159 (2017). https://doi.org/10.1007/s11738-017-2458-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2458-x

Keywords

Navigation