Skip to main content
Log in

The role of putrescine against the long terminal repeat (LTR) retrotransposon polymorphisms induced by salinity stress in Triticum aestivum

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

This study aimed to research the impact of putrescine against the long terminal repeat (LTR) retrotransposon polymorphisms (Nikita-E2647, Sukkula, Stowaway, WLTR2105 and 5′LTR) induced by salinity stress in Triticum aestivum using inter-retrotransposon amplified polymorphism (IRAP) assay. The results showed that the LTR retrotransposon polymorphisms can be induced by all treated sodium chloride (NaCl) doses (0, 50, 100, 200 and 300 mM NaCl). On the other hand, the LTR retrotransposons polymorphisms were decreased effectively by treatment with putrescine (0, 0.01, 0.1 and 1 mM) together with NaCl. These results suggest that putrescine could effectively inhibit salt-induced LTR retrotransposon polymorphisms, and putrescine positively contributed to salt stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aalami A, Safiyar S, Mandoulakani BA (2012) R-RAP: a retrotransposon-based DNA fingerprinting technique in plants. POJ 5:359–364

    CAS  Google Scholar 

  • Alzohairy AM, Yousef MA, Edris S, Kerti B, Gyulai G, Bahieldin A (2012) Detection of LTR retrotransposons Reactivation induced by in vitro Environmental Stresses in Barley (Hordeum vulgare) via RT-Qpcr. Life Sci J 9:5019–5026

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Baumel A, Ainouche M, Kalendar R, Schulman AH (2002) Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica C.E. Hubbard (Poaceae). Mol Biol Evol 19:1218–1227

    Article  CAS  PubMed  Google Scholar 

  • Bayram E, Yilmaz S, Hamat-Mecbur H, Kartal-Alacam G, Gozukirmizi N (2012) Nikita retrotransposon movements in callus cultures of barley (Hordeum vulgare L.). POJ 5:211–215

    CAS  Google Scholar 

  • Bento M, Pereira HS, Rocheta M, Gustafson P, Viegas W, Silva M (2008) Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in triticale. PLoS One 3:e1402

    Article  PubMed Central  PubMed  Google Scholar 

  • Bichler J, Herrmann RG (1990) Analysis of the promotors of the single-copy genes for plastocyanin and subunit 6 of the chloroplast ATP synthase from spinach. Eur J Biochem 190:415–426

    Article  CAS  PubMed  Google Scholar 

  • Bors W, Langebartels C, Michel C, Sandermann H (1989) Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry 28:1589–1595

    Article  CAS  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stres. Proc Natl Acad Sci USA 10:9909–9914

    Article  Google Scholar 

  • Carvalho A, Guedes-Pinto H, Lima-Brito JE (2012) Genetic diversity in old portuguese durum wheat cultivars assessed by retrotransposon-based markers. Plant Mol Biol Rep 30:578–589

    Article  Google Scholar 

  • Cho D, Shin D, Jeon WB, Kwak JM (2009) ROS-mediated ABA signaling. J Plant Biol 52:102–113

    Article  CAS  Google Scholar 

  • D’Agostino L, Di-Pietro M, Di-Luccia A (2005) Nuclear aggregates of polyamines are supramolecular structures that play a crucial role in genomic DNA protection and conformation. FEBS J 272:3777–3787

    Article  PubMed  Google Scholar 

  • Erdal S (2011) Alleviation of salt stress in wheat seedlings by mammalian sex hormones. J Sci Food Agric 92:1411–1416

    Article  PubMed  Google Scholar 

  • Erturk FA, Ay H, Nardemir G, Agar G (2013) Molecular determination of genotoxic effects of cobalt and nickel on maize (Zea mays L.) by RAPD and protein analyses. Toxicol Ind Health 29:662–671

    Article  CAS  PubMed  Google Scholar 

  • Erturk FA, Agar G, Arslan E, Nardemir G, Aydin M, Taspinar MS (2014) Effects of lead sulfate on genetic and epigenetic changes and endogenous hormone levels in corn (Zea -mays L.). Pol J Environ Stud 23:1925–1932

    CAS  Google Scholar 

  • Finatto T, Costa de Oliveira A, Chaparro C et al (2015) Abiotic stress and genome dynamics: specific genes and transposable elements response to iron excess in rice. Rice 8:13

    Article  PubMed Central  PubMed  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121

    Article  CAS  Google Scholar 

  • Gbadegesin MA, Wills MA, Beeching JR (2008) Diversity of LTR-retrotransposons and enhancer/suppressor mutator-like transposons in cassava (Manihot esculenta Crantz). Mol Genet Genomics 280:305–317

    Article  CAS  PubMed  Google Scholar 

  • Ge CL, Yang XY, Liu XN, Sun JH, Luo SS, Wang ZG (2002) Effects of heavy metal on the DNA methylation level in rice and wheat. J Plant Physiol Mol Biol 28:363–368

    CAS  Google Scholar 

  • Glenn EP, Brown JJ, Bumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sc 18:227–255

    Article  Google Scholar 

  • Grandbastien MA (2004) Stress activation and genomic impact of plant retrotransposons. J Soc Biol 198:425–432

    CAS  PubMed  Google Scholar 

  • Grandbastien MA (2014) LTR retrotransposons, handy hitchhikers of plant regulation and stress response. Biochim Biophys Acta 1849:403–416

    Article  PubMed  Google Scholar 

  • Grandbastien MA, Lucas H, More JB, Mhiri C, Vernhettes S, Casacuberta JM (1997) The expression of the tobacco Tnt1 is linked to the plant defence responses. Genetica 100:241–252

    Article  CAS  PubMed  Google Scholar 

  • Grandbastien MA, Audeon CE, Bonnivard JM, Casacuberta B, Chalhoub AP, Costa APP (2005) Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet Genome Res 110:229–241

    Article  CAS  PubMed  Google Scholar 

  • Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7:465–471

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–497

    Article  CAS  Google Scholar 

  • Hayashi K, Yoshida H (2009) Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J 57:413–425

    Article  CAS  PubMed  Google Scholar 

  • Hirochika H, Otsuki H, Yoshikawa M, Otsuki Y, Sugimoto K, Takeda S (1996) Autonomous transposition of the tobacco retrotransposon Tto1 in rice. Plant Cell 8:725–734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khan AU, Di-Mascio P, Medeiros MHG, Wilson T (1992) Spermine and spermidine protection of plasmid DNA against single-strand breaks induced by singlet oxygen. Proc Natl Acad Sci USA 89:11428–11430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar A, Bennetzen JL (2000) Retrotransposons: central players in the structure, evolution and function of plant genomes. Trends Plant Sci 5:509–510

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Yang YS, Zhou Q, Xie L, Li P, Sun T (2007) Impact assessment of cadmium contamination on rice (Oryza sativa L.) seedlings at molecular and population levels using multiple biomarkers. Chemosphere 67:1155–1163

    Article  CAS  PubMed  Google Scholar 

  • Lu G, Wu X, Chen B, Gao G, Xu K (2007) Evaluation of genetic and epigenetic modification in rapeseed (Brassica napus) induced by salt stres. J Integr Plant Biol 49:1599–1607

    Article  CAS  Google Scholar 

  • Miyomoto S, Kashiwagi K, Watanabe S, Igarashi K (1993) Estimation of polyamine distribution and polyamine stimulation of protein synthesis in Escherichia coli. Arch Biochem Biophys 300:63–68

    Article  Google Scholar 

  • Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16:15–24

    Article  CAS  Google Scholar 

  • Munns R, Termaat A (1986) Whole-plant responses to salinity. Aust J Plant Physiol 13:143–160

    Article  Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pastuglia M, Roby D, Dumas C, Cockagi JM (1997) Rapid induction by Wsunding and bacterial infection of an S gene family receptorlike kinase gene in Brassica oleracea. Plant Cell 9:49–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perez-Amador MA, Leon J, Green PJ, Carbonell J (2002) Induction of the arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in arabidopsis. Plant Physiol 130:1454–1463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Picault N, Chaparro C, Piegu B, Stenger W, Formey D, Llauro C, Descombin J, Sabot F, Lasserre E, Meynard D, Guiderdoni E, Panaud O (2009) Identification of an active LTR retrotransposon in rice. Plant J 58:754–765

    Article  CAS  PubMed  Google Scholar 

  • Piterková J, Luhová L, Zajoncová L, Sebela M, Petřivalský M (2012) Modulation of polyamine catabolism in pea seedlings by calcium during salinity stress. Plant Prot Sci 2:53–64

    Google Scholar 

  • Pouteau S, Grandbastien MA, Boccara M (1994) Microbial elicitors of plant defence responses activate transcription of a retrotransposon. Plant J 5:535–542

    Article  CAS  Google Scholar 

  • Ross C, Shen QJ (2006) Computational prediction and experimental veriWcation of HVA1-like abscisic acid responsive promoters in rice (Oryza sativa). Plant Mol Biol 62:233–246

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Herrera J, Ruiz-Medrano R, Dominguez A (1995) Selective inhibition of cytosine-DNA methylases by polyamines. FEBS Lett 357:192–196

    Article  CAS  PubMed  Google Scholar 

  • Salazar M, González E, Casaretto JA, Casacuberta JM, Ruiz-Lara S (2007) The promoter of the TLC1.1 retrotransposon from Solanum chilense is activated by multiple stress-related signaling molecules. Plant Cell Rep 26:1861–1868

    Article  CAS  PubMed  Google Scholar 

  • Shevyakova NI, Shorina MV, Rakitin VY, Stetsenko LA, Kuznetsov VIV (2004) Ethylene-induced production of cadaverine is mediated by protein phosphorylation and dephosphorylation. Doklady Biol Sci 395:127–129

    Article  CAS  Google Scholar 

  • Si Y, Zhang C, Meng S, Dane F (2009) Gene expression changes in response to drought stress in Citrullus colocynthis. Plant Cell Rep 28:997–1009

    Article  CAS  PubMed  Google Scholar 

  • Slotkin KH, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    Article  CAS  PubMed  Google Scholar 

  • Steward N, Kusano T, Sano H (2000) Express of ZmMET1, a gene encoding a DNA methyltransferase from maize, is associated not only with DNA replication in actively proliferating cells, but also with altered DNA methylation status in cold-stressed quiescent cells. Nucleic Acids Res 28:3250–3259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun Y, Xu CH, Wang MQ, Zhi DY, Xia GM (2014) Genomic changes at the early stage of somatic hybridization. Genet Mol Res 13:1938–1948

    Article  CAS  PubMed  Google Scholar 

  • Takeda S, Sugimoto K, Otsuki H, Hirochika H (1999) A 13-pb cisregulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors. Plant J 18:383–393

    Article  CAS  PubMed  Google Scholar 

  • Tan M (2010) Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiol Biochem 48:21–26

    Article  CAS  PubMed  Google Scholar 

  • Tang M, Liu X, Deng H, Shen S (2011) Over-expression of JcDREB, a putative AP2/EREBP domain-contaning transcription factor gene in woody biodiesel plant Jatropha curcas, enhances salt and freezing tolerance in transgenic Arabidopsis thaliana. Plant Sci 181:623–631

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138

    Article  PubMed Central  PubMed  Google Scholar 

  • Voronova A, Belevich V, Jansons A, Rungis D (2014) Stress-induced transcriptional activation of retrotransposon-like sequences in the Scots pine (Pinus sylvestris L.) genome. Tree Genet Genomes 10:937–951

    Article  Google Scholar 

  • White SE, Habera LF, Wessler SR (1994) Retrotransposons in the Xanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. PNAS 91:11792–11796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woodrow P, Pontecorvo G, Fantaccione S, Fuggi A, Kafantaris I, Carillo P (2010) Polymorphism of a new Ty1-copia retrotransposon in durum wheat under salt and light stresses. Theor Appl Genet 121:311–322

    Article  CAS  PubMed  Google Scholar 

  • Ye B, Müller HH, Zhang J, Gressel J (1997) Constitutively elevated levels of putrescine and putrescine generating enzymes correlated with oxidant stress resistance in Conyza bonariensis and wheat. Plant Physiol 15:1443–1451

    Google Scholar 

  • Yeo A (1998) Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot 49:915–929

    CAS  Google Scholar 

  • Zhong L, Xu YH, Wang JB (2009) DNA-methylation changes induced by salt stress in wheat Triticum aestivum. Afr J Biotechnol 8:6201–6207

    CAS  Google Scholar 

  • Zhong L, Xu YH, Wang JB (2010) The effect of 5-azacytidine on wheat seedlings responses to NaCl stres. Biol Plantarum 54:753–756

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Ataturk University Research Project Foundation (Contract no: 2013/291) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guleray Agar.

Additional information

Communicated by B. Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sigmaz, B., Agar, G., Arslan, E. et al. The role of putrescine against the long terminal repeat (LTR) retrotransposon polymorphisms induced by salinity stress in Triticum aestivum . Acta Physiol Plant 37, 251 (2015). https://doi.org/10.1007/s11738-015-2002-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-2002-9

Keywords

Navigation