Skip to main content
Log in

Regulation of growth and development in phytochrome mutants of Arabidopsis thaliana by solar UV

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Phytochrome mutants (phyA, phyB and phyAB) of Arabidopsis thaliana were grown under ambient and UV-excluded sunlight to understand their influence on growth and development by mutual exclusion. Phytochrome A and B played a complementary role in the regulation of germination. Suppression of hypocotyl length was predominantly under the control of phytochrome B; UV photoreceptors were active in suppression of hypocotyl growth only in phyB and phyAB mutants. Exclusion of UV promoted the number and the area of rosette leaves only in presence of phytochrome A and B. Phytochrome mutation reduced petiole length, whereas UV exclusion led to an increase. Requirement of long-day period for flowering was removed in the mutants. Under short-day conditions, flowering was predominantly under the control of phytochrome B, since phyB mutants flowered earlier than phyA mutants. Solar UV regulates the number of boltings and number of siliques per plant. Overall biomass of the plants is enhanced by the exclusion of UV only in the wild type. The interaction of phytochromes with UV photoreceptors is discussed in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

UV:

Ultraviolet

Phy:

Phytochrome

DAE:

Days after emergence

SD:

Short day

LD:

Long day

W:

White

R:

Red

WT:

Wild type

References

  • Allen DJ, Mckee IF, Farage PK, Baker NR (1997) Analysis of limitations to CO2 assimilation on exposure of leaves of two Brassica napus cultivars to UV-B. Plant Cell Environ 20:633–640

    Article  CAS  Google Scholar 

  • Baroniya SS, Kataria S, Pandey GP, Guruprasad KN (2011) Intraspecific variation in sensitivity to ambient ultraviolet-B radiation in growth and yield characteristics of eight soybean cultivars grown under field conditions. Braz J Plant Physiol 23(3):197–202

    CAS  Google Scholar 

  • Boccalandro HE, Rugnone ML, Moreno JE, Ploschuk EL, Sema L, Yanovsky MJ, Casal JJ (2009) Phytochrome B enhances photosynthesis at the expense of water-use-efficiency in Arabidopsis. Plant Physiol 150:1083–1092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Casson SA, Franklin KA, Gray JE, Grierson CS, Whitelam GC, Hetherington AM (2009) Phytochrome B and PIF4 regulate stomatal development in response to light quantity. Curr Biol 19:229–234

    Article  CAS  PubMed  Google Scholar 

  • Clack T, Shokry A, Moffet M, Liu P, Faul M, Sharrock RA (2009) Obligate heterodimerization of Arabidopsis phytochrome C and E and interaction with the PIF3 basic helix–loop–helix transcription factor. Plant Cell 21:786–799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dehriya P, Kataria S, Guruprasad KN, Pandey GP (2011) Assessment of impact of solar UV components on growth and antioxidant enzyme activity in cotton plant. Physiol Mol Biol Plants 17(3):223–229

    Article  Google Scholar 

  • Franklin KA (2008) Shade avoidance. New Phytol 179:930–944

    Article  CAS  PubMed  Google Scholar 

  • Franklin KA, Praekelt U, Stoddart WM, Billingham OE, Halliday KJ, Whitelam GC (2003) Phytochrome B, D and E act redundantly to control multiple physiological responses in Arabidopsis. Plant Physiol 131:1340–1346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Franklin KA, Allen T, Whitelam GC (2007) Phytochrome A is an irradiance dependent red light sensor. Plant J 50:108–117

    Article  CAS  PubMed  Google Scholar 

  • Guruprasad KN, Bhattacharjee S, Kataria S, Yadav S, Tiwari A, Baroniya S, Rajiv A, Mohanty P (2007) Growth enhancement of soybean (Glycine max) upon exclusion of UV-B and UV-A components of solar radiation: characterization of photosynthetic parameters in leaves. Photosyn Res 94:299–306

    Article  PubMed  Google Scholar 

  • Kataria S, Guruprasad KN (2012) Intraspecific variations in growth, yield and photosynthesis of Sorghum varieties to ambient UV (280–400 nm) radiation. Plant Sci 196:85–92

    Article  CAS  PubMed  Google Scholar 

  • Kataria S, Guruprasad KN (2014) Exclusion of solar UV components improves growth and performance of Amaranthus tricolor varieties. Sci Hortic 174:36–45

    Article  Google Scholar 

  • Kataria S, Guruprasad KN, Ahuja S, Singh B (2013) Enhancement of growth, photosynthetic performance and yield by exclusion of ambient UV components in C3 and C4 plants. J Photochem Photobiol B Biol 127:140–152

    Article  CAS  Google Scholar 

  • Kim BC, Tennessen DJ, Last RL (1998) UV-B induced photomorphogenesis in Arabidopsis thaliana. Plant J 15:667–674

    Article  CAS  PubMed  Google Scholar 

  • Koornneef M, Rolff E, Spruit CJP (1980) Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L). Heynh Z Pflanzenphysiol 100:147–160

    Article  Google Scholar 

  • Ma LG, Li JM, Qu LJ, Chen ZL, Zhao HY, Deng XW (2001) Light control of Arabidopsis development entails co-ordinated regulation of genome expression and cellular pathways. Plant Cell 13:2589–2607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mathews S, Sharrock RA (1997) Phytochrome gene diversity. Plant Cell Environ 20:666–671

    Article  CAS  Google Scholar 

  • Moller SG, Ingles PJ, Whitelam GC (2002) The cell biology of phytochrome signaling. New Physiol 154:553–590

    Article  CAS  Google Scholar 

  • Nogues S, Baker NR (1995) Evaluation of the role of damage to photosystem II in the inhibition of CO2 assimilation in pea leaves on exposure to UV-B radiation. Plant Cell Environ 18:781–787

    Article  CAS  Google Scholar 

  • Rathore D, Agrawal SB, Singh A (2003) Influences of supplemental UV-B radiation and mineral nutrients on biomass, pigments and yield of two cultivars of wheat (Triticum aestivum L.). Int J Biotron 32:1–15

    Google Scholar 

  • Reed JW, Nagatani A, Elich TD, Fagan M, Chory J (1994) Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiol 104:1139–1149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robson PRH, Whitelam GC, Smith H (1993) Selected components of the shade avoidance syndrome are displayed in a normal manner in mutants of Arabidopsis thaliana and Brassica rapa deficient in phytochrome B. Plant Physiol 102:1179–1184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schafer E, Bowler C (2002) Phytochrome-mediated photoreception and signal transduction in higher plants. EMBO Rep 3:1042–1048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma A, Guruprasad KN (2009) Similarities in the biochemical changes between solar UV exclusion and GA application in Amaranthus caudatus. Physiol Mol Biol Plants 15(4):367–370

    Article  PubMed Central  PubMed  Google Scholar 

  • Tevini M, Teramura AH (1989) UV-B effects on terrestrial plants. Photochem Photobiol 50:479–487

    Article  CAS  Google Scholar 

  • Varalakshmi D, Nimmagadda L, Guruprasad KN (2003) Physiological changes in soybean cv JS 71-05 after the exclusion of UV-A and UV-B from solar radiation. Ind J Plant Physiol (special issue) 602–606

  • Weller JL, Reid JB (1993) Photoperiodism and photo control of stem elongation in two photomorphogenic mutants of Pisum sativum L. Planta 189:15–23

    Article  Google Scholar 

  • Weller JL, Murfet IC, Reid JB (1997a) Pea mutants with reduced sensitivity to far-red light define an important role for phytochrome A in day-length detection. Plant Physiol 114:1225–1236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weller JL, Reid JB, Taylor SA, Murfet IC (1997b) The genetic control of flowering in pea. Trends Plant Sci 2:412–418

    Article  Google Scholar 

  • Whitelam GC, Devlin PF (1997) Roles for different phytochromes in Arabidopsis photomorphogenesis. Plant Cell Environ 20:752–758

    Article  CAS  Google Scholar 

  • Whitelam GC, Johnson E, Peng J, Carol P, Anderson ML, Cowl JS, Harberd NP (1993) Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell 5:757–768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao D, Reddy KR, Kakani VG, Mohammed AR, Read JJ, Gao W (2004) Leaf canopy photosynthetic characteristics of cotton (Gossypium hirsutum) under elevated CO2 concentration and UV-B radiation. J Plant Physiol 161:581–590

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thankfully acknowledge review of the data by Dr. Vitaly Sineshchekov and Dr. Larissa Koppel of Biophysics Department, Moscow, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priya Mani.

Additional information

Communicated by Z. Miszalski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mani, P., Guruprasad, K.N. Regulation of growth and development in phytochrome mutants of Arabidopsis thaliana by solar UV. Acta Physiol Plant 37, 111 (2015). https://doi.org/10.1007/s11738-015-1849-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1849-0

Keywords

Navigation