Skip to main content
Log in

Physiological and biochemical characteristics of Vigna species for Al stress tolerance

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The objective of the present investigation was to evaluate Al tolerance in three Vigna species viz. V. radiata (‘Pusa-672’), V. mungo (‘Mash-114’) and V. umbellata (‘RBL-6’) under Al stress conditions. All three Vigna species were assessed in hydroponic assay in various concentration of Al (0, 74 and 185 μM) for 48 h. Variations in the Al tolerance were analysed based on various traits such as root elongation rate, re-growth after hematoxylin staining, accumulation of aluminium and callose and their localization, H2O2, lipid peroxidation and antioxidant enzymes activity. Aluminium stress caused inhibition in root elongation rate and root re-growth and increased accumulation of aluminium, callose, H2O2 and lipid peroxidation in all three Vigna species. However, accumulation of aluminium, callose, H2O2 and lipid peroxidation was more in V. radiata (‘Pusa-672’) than in V. mungo (‘Mash-114’) and V. umbellata (‘RBL-6’). Higher activity of superoxide dismutase (SOD; EC 1.15.1.1), guaiacol peroxidase (GPX; EC 1.11.1.7) and ascorbate peroxidase (APX; EC 1.11.1.11) was observed in V. umbellata than in V. mungo and V. radiata. Transverse sections of roots were examined to confirm the localization of Al in the apoplastic or symplastic regions using fluorescent microscopy. In V. umbellata (‘RBL-6’) and V. mungo (‘Mash-114’), most of the Al was localised in the epidermal and cortical tissues indicating restricted movement of Al to the upper layers. In V. radiata, (‘Pusa-672’) more Al was localised in epidermal, cortical, and even endodermal tissues, suggesting its inability to restrict the Al in upper layers. Our findings suggest that V. umbellata as a potential genetic resource for Al tolerance and this trait can be introgressed through breeding programme to develop Al-tolerant genotypes in V. mungo and V. radiata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

GPX:

Guaiacol peroxidase

H2O2 :

Hydrogen Peroxide

MDA:

Malondialdehyde

ROS:

Reactive oxygen species

SOD:

superoxide dismutase

TBARS:

Thiobarbituric acid reacting substances

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Ahn SJ, Matsumoto H (2006) The role of the plasma membrane in the response of plants roots to aluminum toxicity. Plant Signal Behav 1:37–45

    Article  PubMed Central  PubMed  Google Scholar 

  • Alia Prasad KV, Pardha SK, Saradhi P (1995) Effect of zinc on free radical and proline in Brassica and Cajanus. Phytochemistry 39:45–47

    Article  CAS  Google Scholar 

  • Alvim MN, Ramos FT, Oliveira DC, Isaias RMS, França MGC (2012) Aluminium localization and toxicity symptoms related to root growth inhibition in rice (Oryza sativa L.) seedlings. J Biosci 37:1079–1088

    Article  CAS  PubMed  Google Scholar 

  • Andrade LRM, Ikeda M, Ishizuka J (1997) Stimulation of organic acid excretion by roots of aluminum-tolerant and aluminium sensitive wheat varieties under aluminium stress. R Bras Fisiol Veg 9:27–34

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Basu U, Good AG, Taylor GJ (2001) Transgenic Brassica napus plants overexpressing aluminium-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminium. Plant, Cell Environ 24:1269–1278

    Article  CAS  Google Scholar 

  • Boscolo PRS, Menossi M, Jorge RA (2003) Al-induced oxidative stress in maize. Phytochemistry 62:181–189

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of Al on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max L.). Physiol Plant 83:463–468

    Article  CAS  Google Scholar 

  • Castillo FJ, Penel C, Greppin H (1984) Peroxidase release induced by ozone in Sedum album leaves. Plant Physiol 74:846–851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choudhary AK, Singh D, Kumar J (2011) A comparative study of screening methods for tolerance to aluminum toxicity in pigeonpea [Cajanus cajan (L.) Millspaugh]. Aust J Crop Sci 5:1419–1426

    CAS  Google Scholar 

  • Darko E, Ambrus H, Banyai ES, Fodor J, Bakos F, Barnabas B (2004) Aluminum toxicity, Al-tolerance and oxidative stress in an aluminum sensitive wheat genotype and in Al-tolerant lines developed by in vitro microspore selection. Plant Sci 166:583–591

    Article  CAS  Google Scholar 

  • Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dhindsa RS, Plump-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Dipierro N, Mondelli D, Paciolla C, Brunetti G, Dipierro S (2005) Changes in the ascorbate system in the response of pumpkin Cucurbita pepo L.) roots to aluminium stress. J Plant Physiol 162:529–536

    Article  CAS  PubMed  Google Scholar 

  • Du B, Nian H, Zhang Z, Yang C (2010) Effects of aluminum on superoxide dismutase and peroxidase activities, and lipid peroxidation in the roots and calluses of soybeans differing in aluminium tolerance. Acta Physiol Plant 32:883–890

    Article  CAS  Google Scholar 

  • Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminium stress and/or oxidative stress. Plant Physiol 122:657–665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Farooq MA, Ali S, Hameed A, Ishaque W, Mahmood K, Iqbal Z (2013) Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes, suppressed cadmium uptake and oxidative stress in cotton. Ecotoxicol Environ Saf 96:242–249

    Article  CAS  PubMed  Google Scholar 

  • Foy CD (1988) Plant adaptation to acid, aluminium-toxic soils. Commun Soil Sci Plant Anal 19:959–987

    Article  CAS  Google Scholar 

  • Giannakoula A, Moustakas M, Syros T, Yupsanis T (2010) Aluminium stress induces up-regulation of an efficient antioxidant system in the Al-tolerant maize line but not in the Al-sensitive line. Environ Exp Bot 67:487–494

    Article  CAS  Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier.-. Funct Plant Biol 32:481–494

    Article  Google Scholar 

  • Guevara P, Poschenrieder Ch, Barceló (1992) Differential response of four maize (Zea mays L.) varieties to aluminum toxicity. Sueloy Planta 1:714–721

    Google Scholar 

  • Haug A, Caldwell CR (1985) Aluminium toxicity in plants: the role of root plasma membrane and calmodulin. In: John JB St, Berlin E, Jackson E, Otawa PC (Eds.) Frontiers of membrane Research in Agriculture, (Rowman and Allanheld), pp 359–381

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives in Bioch Biophy 125:189–198

    Article  CAS  Google Scholar 

  • Horst WJ, Asher CJ, Cakmak I, Szulkiewica P, Wissemeier AH (1992) Short-term responses of soybean roots to aluminum. J Plant Physiol 140:174–178

    Article  CAS  Google Scholar 

  • Kauss H (1992) Callose and callose synthase. In: SJ Gurr, MJ McPherson, DJ Bowles (eds) Molecular plant morphology: a practical approach. vol 2, Oxford University Press, New York, pp 1–8

  • Kochian LV (1995) Cellular mechanism of aluminium toxicity and resistance in plants. Ann Rev Plant Physiol Plant Mol Biol 46:237–260

    Article  CAS  Google Scholar 

  • Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Ann Rev Plant Biol 55:459–493

    Article  CAS  Google Scholar 

  • Kochian LV, Pineros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195

    Article  CAS  Google Scholar 

  • Kuo MC, Kao CH (2003) Aluminum effects on lipid peroxidation and antioxidative enzyme activities in rice leaves. Biol Plant 46:149–152

    Article  CAS  Google Scholar 

  • Lee SH, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH (2007) Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 164:1626–1638

    Article  CAS  PubMed  Google Scholar 

  • Ma BH, Wan JM, Shen ZG (2007) H2O2 production and antioxidant responses in seeds and early seedling of two different rice varieties exposed to aluminum. Plant Growth Regul 52:91–100

    Article  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44:25–37

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gallery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Oteiza PI (1994) A mechanism for the stimulatory effect of aluminum on iron-induced lipid peroxidation. Arch Biochem Biophys 308:374–379

    Article  PubMed  Google Scholar 

  • Parker DR (1995) Root growth analysis: an underutilised approach to understanding aluminium rhizotoxicity. Plant Soil 171:151–157

    Article  CAS  Google Scholar 

  • Polle E, Konzak CF, Kittrick JA (1978) Visual detection of aluminium tolerance levels in wheat by hematoxylin staining of seedlings roots. Crop Sci 18:823–827

    Article  CAS  Google Scholar 

  • Poschenrieder C, Gunse B, Corrales I, Barcelo J (2008) A glance into aluminium toxicity and resistance in plants. Sci Total Environ 400:356–368

    Article  CAS  PubMed  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ryan PR, DiTomaso JM, Kochian LV (1993) Aluminium toxicity in roots: an investigation of spatial sensitivity and the role of the root cap. J Exp Bot 44:437–446

    Article  CAS  Google Scholar 

  • Scott BJ, Fisher JA, Spohr LJ (1992) Tolerance of australian wheat varieties to aluminium toxicity. Commun Soil Sci Plant Anal 23:509–526

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep 26:2027–2038

    Article  CAS  PubMed  Google Scholar 

  • Simon L, Smalley TJ, Jones JB Jr, Lasseigne FT (1994) Aluminum toxicity in tomato: part I. Growth and mineral nutrition. J Plant Nutr 17:293–306

    Article  CAS  Google Scholar 

  • Singh D, Chauhan SK (2011) Organic acids of crop plants in aluminium detoxification. Curr Sci 100:1509–1515

    CAS  Google Scholar 

  • Singh D, Dikshit HK (2012) Comparison of aluminium tolerance in mung bean (Vigna radiata L.) and related species under low pH conditions. Paper presented in International Symposium on “Plant Soil Interaction at Low pH at University of Agricultural Sciences, Bangalore, Karnataka, India from October 18–22, pp 146–147

  • Singh D, Dikshit HK, Singh R (2012) Variation of aluminium tolerance in lentil. Plant Breed 131:751–761

    Article  CAS  Google Scholar 

  • Singh D, Dikshit HK, Kumar R (2015) Aluminium tolerance in lentil with monogenic inheritance pattern. Plant Breed 134:105–110

    Article  CAS  Google Scholar 

  • Tahara K, Yamanoshita T, Norisada M, Hasegawa I, Kashima H, Sasaki S, Kojima K (2008) Aluminum distribution and reactive oxygen species accumulation in root tips of two Melaleuca trees differing in aluminum resistance. Plant Soil 307:167–178

    Article  CAS  Google Scholar 

  • Tice KR, Parker DR, Demason DA (1992) Operationally defined apoplastic and symplastic aluminum fractions in root tips of aluminum-intoxicated wheat. Plant Physiol 100:309–318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vázquez MD, Poschenrieder C, Corrales I, Barcelo J (1999) Change in apoplastic aluminium during the initial growth response to aluminium by roots of a tolerant maize variety. Plant Physiol 119:435–444

    Article  PubMed Central  PubMed  Google Scholar 

  • Wissemeier AH, Klotz F, Horst WJ (1987) Aluminium induced callose synthesis in roots of soybean (Glycine max L.). J Plant Physiol 129:487–492

    Article  CAS  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125:199–208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yin L, Junichi M, Wang S, Tsuji W, Tanaka K (2010) The involvement of lipid peroxide-derived aldehydes in aluminum toxicity of tobacco roots. Plant Physiol 152:1406–1417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang G, Hoddinott J, Taylor GJ (1994) Characterization of 1,3-β-D-glucan (callose) synthesis in roots of Triticum aestivum in response to aluminum toxicity. J Plant Physiol 144:229–234

    Article  CAS  Google Scholar 

  • Zhen Y, Miao L, Su J, Liu SH, Yin YL, Wang SS, Pang YJ, Shen HG, Tian D, Qi JL, Yang YH (2009) Differential responses of antioxidative enzymes to aluminum stress in tolerant and sensitive soybean genotypes. J Plant Nutr 32:1255–1270

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank to Head, Division of Genetics and Plant Physiology, Director and Joint Director Research, and Incharge National Phytotron Facility, Indian Agricultural Research Institute, New Delhi, India for their encouragement and providing research facilities to carry out this research work. This work was supported by the Indian Agricultural Research Institute, New Delhi, India (Project No. Gen09/16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmendra Singh.

Additional information

Communicated by J. Zwiazek.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Pal, M., Singh, R. et al. Physiological and biochemical characteristics of Vigna species for Al stress tolerance. Acta Physiol Plant 37, 87 (2015). https://doi.org/10.1007/s11738-015-1834-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1834-7

Keywords

Navigation