Skip to main content
Log in

Effect of salinity on plant growth and biological activities of Carthamus tinctorius L. extracts at two flowering stages

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In the present study, we were interested in the effect of salt stress on phenolic and carotenoid contents, antioxidant and antimicrobial activity of two varieties of Carthamus tinctorius (Jawhara and 104) flowers. For this purpose, C. tinctorius flowers from plants grown under four saline treatments (0, 5, 10 and 15 g/L NaCl) were collected at two development stages. As salinity increased up to 10 g/L, results showed that total phenols, flavonoids, condensed tannins and carotenoid contents increased with salinity. Such variability might be of great importance in terms of valorizing this plant as a source of naturally secondary metabolites. Furthermore, our results showed an enhancement of antioxidant activity which was evaluated by four different test systems (DPPH, β-carotene–linoleic acid, chelating and reducing power assays) with increasing stress severity. Obtained results showed that, for the two varieties, salt effect was more pronounced at post flowering stage than full flowering one. The sensitivity test of the methanolic extracts of the harvested flowers was applied against seven human pathogenic bacteria and three yeast strains. Salinity reduced significantly the antimicrobial activity of flower extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abogadallah MG (2010) Antioxidative defense under salt stress. Plant Signal Behav 5:369–374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ayaz FA, Kadioglu A, Turgut R (2000) Water stress effects on the content of low molecular weight carbohydrates and phenolic acids in Ctenanthe setosa (Rose.) Eichler. Can J Plant Sci 80:373–378

    Article  CAS  Google Scholar 

  • Ben Abdallah S, Rabhi M, Harbaoui F, Zar-Kalai F, Lachâal M, Karray-Bouraoui N (2013) Distribution of phenolic compounds and antioxidant activity between young and old leaves of Carthamus tinctorius L. and their induction by salt stress. Acta Physiol Plant 35:1161–1169

    Article  CAS  Google Scholar 

  • Ben Taârit M, Msaada K, Hosni K, Marzouk B (2010) Changes in fatty acid and essential oil composition of sage (Salvia officinalis L.) leaves under NaCl stress. Food Chem 119:951–956

    Article  Google Scholar 

  • Ben Taârit M, Msaada K, Hosni K, Marzouk B (2012) Physiological changes, phenolic content and antioxidant activity of Salvia officinalis L. grown under saline conditions. J Sci Food Agric 92:1614–1619

    Article  Google Scholar 

  • Borghesi E, González-Miret ML, Escudero-Gilete ML, Malorgio F, Heredia FJ, Meléndez-Martínez AJ (2011) Effects of salinity stress on carotenoids, anthocyanins, and color of diverse tomato genotypes. J Sci Food Agric 59:11676–11682

    Article  CAS  Google Scholar 

  • Bourgou S, Ksouri R, Bellila A, Skandrani I, Falleh H, Marzouk B (2008) Phenolic composition and biological activities of Tunisian Nigella sativa L. shoots and roots. Comp Rend Biol 331:48–55

    Article  CAS  Google Scholar 

  • Cano A, Medinaan A, Bermejo A (2008) Bioactive compounds in different citrus varieties. Discrimination among cultivars. J Food Comp Anal 21:377–381

    Article  CAS  Google Scholar 

  • Dajue L, Hans-Henning M (1996) Safflower Carthamus tinctorius L. Int Plant Gen Res Inst 92:207–297

    Google Scholar 

  • Dewanto V, Wu X, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Sci Food Agric 50:3010–3014

    Article  CAS  Google Scholar 

  • Djeridane M, Yousfi B, Nadjemi D, Boutassouna P, Stocker N (2006) Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem 97:654–660

    Article  CAS  Google Scholar 

  • Dow AI, Cline TA, Horning EV (1981) Salt tolerance studies on irrigated Mint. Bulletin of Agriculture Research Center, Washington State University, Pullman, no. 906, p 11

  • Falleh H, Ksouri R, Chaieb K, Bouraoui NK, Trabelsi N, Boulaaba M, Abdelly C (2008) Phenolic composition of Cynara cardunculus L. organs, and their biological activities. Comp Rend Biol 331:372–379

    Article  CAS  Google Scholar 

  • Francois LE, Bernstein L, Gill S, Tuteja N (1964) Salt tolerance of safflower. Agron J 54:38–40

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gressel J, Galun E (1994) Genetic controls of photooxidant tolerance. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plant. CRC Press, Boca Raton, pp 237–274

    Google Scholar 

  • Griffin GS, Markham LJ, Leach ND (2000) An agar dilution method for the determination of the minimum inhibitory concentration of essential oils. J Essent Oil Res 12:149–255

    Google Scholar 

  • Haghighi Z, Karimi N, Modarresi M, Mollayi S (2012) Enhancement of compatible solute and secondary metabolites production in Plantago ovata Forsk by salinity stress. J Med Plants Res 6:3495–3500

    CAS  Google Scholar 

  • Hanato T, Kagawa H, Yasuhara T, Okuda T (1988) Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effect. Chem Pharm Bull 36:1090–1097

    Google Scholar 

  • Hoagland DR, Arnon DS (1950) The water-culture method for growing plants without soil, California Agricultural Experiment Station (Circular 347). University of California, Berkeley, pp 1–32

    Google Scholar 

  • Kaffka SR, Kearney TE (1998) Safflower production in California, University of California Agricultural and Natural Research, Publication no. 21565, Okland

  • Khan TA, Mazid M, Mohammad F (2011) Status of secondary plant products under abiotic stress: an overview. J Stress Physiol Biochem 7:75–98

    Google Scholar 

  • Kim HJ, Fonseca JM, Choi JH, Kubota C, Kwon DY (2007) Salt in irrigation water affects the nutritional and visual properties of romaine lettuce (Lactuca sativa L.). J Agric Food Chem 56:3772–3776

    Article  Google Scholar 

  • Kirk JO, Allen RL (1965) Dependence of salinity stress on the activity of glutamine synthetase and glutamate dehydrogenase in triticale seedlings. Pol J Environ Stud 14:523–530

    Google Scholar 

  • Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritime. Plant Physiol Biochem 45:244–249

    Article  CAS  PubMed  Google Scholar 

  • Ksouri R, Megdiche W, Falleh H, Trabelsi N, Boulaaba M, Smaoui A, Abdelly C (2008) Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. Comp Rend Biol 331:865–873

    Article  CAS  Google Scholar 

  • Kulisic T, Radonic A, Katalinic V, Milos M (2004) Use of different methods for testing antioxidative activity of oregano essential oil. Food Chem 85:633–640

    Article  CAS  Google Scholar 

  • Lee G, Carrow RN, Duncan RR (2004) Photosynthetic responses to salinity stress of halophytic seashore paspalum ecotypes. Plant Sci 166:1417–1425

    Article  CAS  Google Scholar 

  • Leyva A, Jarrillo JA, Salinas J, Martınez-Zapater M (1995) Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNA of Arabidopsis thaliana in light-dependent manner. Plant Physiol 108:39–46

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maisuthisakul P, Suttajit M, Pongsawatmanit R (2007) Assessment of phenolic content and free radical scavenging capacity of some Thai indigenous plants. Food Chem 100:1409–1418

    Article  CAS  Google Scholar 

  • Mane AV, Saratale GD, Karadge BA, Samant JS (2011) Studies on the effects of salinity on growth, polyphenol content and photosynthetic response in Vetiveria zizanioides (L.) Nash Emir. J Food Agric 23:59–70

    Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    Article  CAS  Google Scholar 

  • Menadi H (1997) Action du stress salin sur la composition glycérlipidique au cours de la germination de la graine de la croissance de la plante de carthame (Carthamus tinctorius L). Mémoire de DEA de Physiologie végétale Option Ecophysiolgie Faculté des Sciences de Tunis, p 74

  • Najine F (1996) Effet du chlorure de sodium sur le métabolisme lipidique du colza (Brassica napus). Thèse de doctorat Physiologie végétale Faculté des Sciences de Tunis, p 156

  • Navarro JM, Flores P, Garrido C, Martinez V (2006) Changes in the contents of antioxidant compounds in pepper fruits at ripening stages, as affected by salinity. Food Chem 96:66–73

    Article  CAS  Google Scholar 

  • Oyaizu M (1986) Studies on products of browning reaction: antioxidative activity of products of browning reaction. Jap J Nutr 44:307–315

    Article  CAS  Google Scholar 

  • Rajguru SN, Banks SW, Gossett DR, Lucas MC, Millhollon EP (1999) Antioxidant response to salt stress during fiber development in cotton ovules. J Cotton Sci 3:11–18

    CAS  Google Scholar 

  • Rezazadeh A, Ghasemnezhad A, Mojtaba Barani M, Telmadarrehei T (2012) Effect of salinity on phenolic composition and antioxidant activity of artichoke (Cynara scolymus L.) Leave. Res J Med Plant 6:245–252

    Article  CAS  Google Scholar 

  • Rios JL, Recio MC (2005) Medicinal plants and antimicrobial activity. J Ethnopharmacol 100:80–84

    Article  CAS  PubMed  Google Scholar 

  • Riso P, Porrini M (1997) Determination of carotenoids in vegetable foods and plasma. Int J Vitam Nutr Res 67:47–54

    CAS  PubMed  Google Scholar 

  • Salem N, Msaada K, Hamdaoui G, Limam F, Marzouk B (2011) Variation in phenolic composition and antioxidant activity during flower development of safflower (Carthamus tinctorius L.). J Agric Food Chem 59:4455–4463

    Article  CAS  PubMed  Google Scholar 

  • Shannon MC, Grieve CM (1999) Tolerance of vegetable crops to salinity. Sci Hortic 78:5–38

    Article  CAS  Google Scholar 

  • Soares AA, Marques de Souza CG, Daniel FM, Ferrari GP, Gomes da Costa SM, Peralta RM (2009) Antioxidant activity and total phenolic content of Agaricus brasiliensis (Agaricus blazei Murril) in two stages of maturity. Food Chem 112:775–781

    Article  CAS  Google Scholar 

  • Sonar BA, Nivas MD, Gaikwad DK, Chavan PD (2011) Assessment of salinity-induced antioxidative defense system in Colubrina asiatica brong. J Stress Physiol Biochem 7:193–200

    Google Scholar 

  • Statsoft (1998) STATISTICA for Windows (Computer program electronic 703 manual). Statsoft, Inc., Tulsa

    Google Scholar 

  • Sun BS, Ricardo-Da-Silva JM, Spranger MI (1998) Critical factors of vanillin assay for catechins and proanthocyanidins. J Sci Food Agric 46:4267–4274

    Article  CAS  Google Scholar 

  • Šutković J, Ler D, Gawwad MRA (2011) In vitro production of solasodine alkaloid in Solanum nigrum under salinity stress. J Phytol 3:3–49

    Google Scholar 

  • Telesinski A, Nowak J, Smolik B, Dubowska A, Skrzypiec N (2008) Effect of soil salinity on activity of antioxidant enzymes and content of ascorbic acid and phenols in bean (Phaseolus vulgaris L.) plants. J Elementol 13:401–409

    Google Scholar 

  • Waheed A, Hafiz IA, Qadir G, Mutaza G, Mahmood T, Ashraf M (2006) Effect of salinity on germination, growth, yield, ionic balance and solute composition of pigeon pea (Cajanus cajan (L.) millsp). Pak J Bot 38:1103–1117

    Google Scholar 

  • Zhao H, Dong J, Lu J, Chen J, Li Y, Shan L, Lin Y, Fan W, Gu G (2006) Effect of extraction solvent mixtures on antioxidant activity evaluation and their extraction capacity and selectivity for free phenolic compounds in Barely (Hordeum vulgare L.). J Agric Food Chem 54:7277–7286

    Article  CAS  PubMed  Google Scholar 

  • Ziaf K, Amjad M, Pervez MA, Iqbal Q, Rajwana IA, Ayyub M (2009) Evaluation of different growth and physiological traits as indices of salt tolerance in hot pepper (Capsicum annuum L.). Pak J Bot 41:1797–1809

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Pr. Abderrazek Smaoui for botanic identification and to Pr. Chedly Abdelly (Borj-Cedria Technopol) for antioxidant activity assays.

Conflict of interest

We declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamel Msaada.

Additional information

Communicated by M. J. Reigosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salem, N., Msaada, K., Dhifi, W. et al. Effect of salinity on plant growth and biological activities of Carthamus tinctorius L. extracts at two flowering stages. Acta Physiol Plant 36, 433–445 (2014). https://doi.org/10.1007/s11738-013-1424-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1424-5

Keywords

Navigation