Skip to main content
Log in

Regulatory effect of acupuncture on electrical activity level of optic cortex in amblyopia model rats

针刺对弱视模型大鼠视皮层电活动水平的调节作用

  • Basic Study
  • Published:
Journal of Acupuncture and Tuina Science Aims and scope Submit manuscript

Abstract

Objective

To explore the abnormal changes in neuroelectric activity in the primary visual cortex of rats deprived of vision in one eye and to investigate the regulatory effect of acupuncture in the sensitive period on the abnormal coding and conduction of electrical signals of rats’ optic neurons.

Methods

Sixty 14-day-old Sprague-Dawley rats were randomly divided into a blank group, a model group, an early-stage acupuncture group, a middle-stage acupuncture group, and a late-stage acupuncture group, with 12 rats in each group. Rats in every group except the blank group received right eyelid suturing to create a monocular deprivation model in the sensitive period of visual development (from the day rats open their eyes to the 45th day after their birth). Rats in the three acupuncture groups started to undergo acupuncture respectively on the 3rd, 12th, and 21st days after the model replication was done, with each group receiving nine-day treatment. The activity level of the neuroelectrical signal of the primary visual cortex in each group, including the latency and amplitude of P100 wave, average discharge frequency and amplitude of neurons, the power spectral density (PSD), and interspike interval (ISI), were measured by neuroelectric evaluation technology after the acupuncture treatment was finished.

Results

Compared with the blank group, the latency of P100 wave in the visual center of vision-deprived eyes was significantly prolonged, and the amplitude was significantly reduced (P<0.05); the average discharge frequency and amplitude of the neurons in the visual cortex also decreased significantly (P<0.05); PSD decreased and ISI was prolonged significantly (P<0.05). Compared with the model group, the abnormal electrical activity of optic neurons in the three acupuncture groups ameliorated, the latency of P100 shortened, and the amplitude of P100 increased (P<0.05), the discharge frequency and amplitude increased significantly (P<0.05), the PSD reduced, and the ISI shortened (P<0.05). In addition, among the three acupuncture groups, the early-stage acupuncture group had the best effect on various indicators.

Conclusion

Abnormal electrophysiological activity is significant in the visual center of vision-deprived rats, and acupuncture treatment in the sensitive period of visual development can enhance the bioelectrical activity of visual nerve cells, improve the efficiency of optic nerve conduction, and regulate the inhibition and retardation of visual response caused by visual deprivation.

摘要

目的

探究单眼形觉剥夺大鼠初级视觉皮层神经电活动的异常变化, 观察敏感期针刺对大鼠视神经元电信号 异常编码和传导的调控作用。

方法

将60只14日龄的Sprague-Dawley大鼠随机分为空白组、模型组、早期针刺组、中 期针刺组和晚期针刺组, 每组12只。在大鼠发育敏感期内(从睁眼到出生后第45天), 除空白组外, 其余各组大鼠均接 受右眼睑缝合, 建立单眼形觉剥夺模型。早、中、晚期针刺组分别于模型复制后第3天、第12天、第21天开始针刺治 疗, 每组接受9 d治疗。针刺治疗结束后采用神经电生理评估技术检测各组初级视觉皮层神经电信号的活动水平, 包 括P100波的潜伏期和波幅、神经元的平均放电频率和幅度、功率谱密度(PSD)和尖峰间期(ISI)。

结果

与空白组相比, 形 觉剥夺大鼠视觉中枢的P100波潜伏期明显延长, 波幅明显降低(P<0.05); 视觉皮层神经元的平均放电频率和幅度也明 显降低(P<0.05); PSD降低, ISI明显延长(P<0.05)。与模型组相比, 针刺治疗的三组大鼠视神经元的异常电活动改善, P100 潜伏期缩短, 波幅升高(P<0.05), 放电频率和幅度明显增加(P<0.05), PSD降低, ISI缩短(P<0.05); 针刺治疗的三组 比较, 早期针刺组各项指标改善效应最佳。

结论

形觉剥夺大鼠视觉中枢存在明显的电生理活动异常, 大鼠视觉发育 敏感期内针刺治疗可增强视神经细胞的生物电活动, 提高视神经传导效率, 调节形觉剥夺引起的视觉反应抑制和延 迟。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GAIER E D, GISE R, HEIDARY G. Imaging amblyopia: insights from optical coherence tomography (OCT). Semin Ophthalmol, 2019, 34(4): 303–311.

    Article  Google Scholar 

  2. FU Z J, HONG H, SU Z C, LOU B, PAN C W, LIU H. Global prevalence of amblyopia and disease burden projections through 2040: a systematic review and meta-analysis. Br J Ophthalmol, 2020, 104(8): 1164–1170.

    Article  Google Scholar 

  3. XIAO O, MORGAN I G, ELLWEIN L B, HE M G; Refractive Error Study in Children Study Group. Prevalence of amblyopia in school-aged children and variations by age, gender, and ethnicity in a multi-country refractive error study. Ophthalmology, 2015, 122(9): 1924–1931.

    Article  Google Scholar 

  4. LIN Y H. Observation on efficacy of visual perception training combined with covering therapy and depression therapy for anisometropic amblyopia. Zhongguo Yanjing Keji Zazhi, 2020, (1): 149–150.

  5. ZHOU Y, ZHANG A, MA C B, YAN X K. Effect of acupuncture therapy on vision and pattern visual evoked potential (P-VEP) in children with amblyopia. Shizhen Guoyi Guoyao, 2020, 31(2): 358–360.

    Google Scholar 

  6. YAN X K, ZHU T T, MA C B, LIU A G, DONG L L, WANG J Y. A meta-analysis of randomized controlled trials on acupuncture for amblyopia. Evid Based Complement Alternat Med, 2013, 2013: 648054.

    PubMed  PubMed Central  Google Scholar 

  7. LIU A G, CAO Z X, MA C B, ZHU T T, ZHANG A, LI X J, YAN X K. Interventional mechanism of acupuncture on electro-physiological plasticity of visual cortex neurons of monocular visual deprivation rats. Zhonghua Zhongyiyao Zazhi, 2018, 33(5): 2092–2095.

    Google Scholar 

  8. MA C B, ZHU T T, LIU A G, CAO Z X, YAN X K. Research advances in neurobiological mechanism of acupuncture for amblyopia. J Acupunct Tuina Sci, 2019, 17(4): 278–283.

    Article  Google Scholar 

  9. WANG Z Q. Expression of mGluR1 at Primary Visual Cortex of Monocular Deprived Amblyopia Rats and the Observation of Neuronic Ultrastructure. Xinxiang: Master Thesis of Xinxiang Medical College, 2007.

    Google Scholar 

  10. MA Y. Relationship between monocularly deprivation and amblyopia rats and visual system development. Asian Pac J Trop Med, 2014, 7(7): 568–571.

    Article  Google Scholar 

  11. LI Z R. Experimental Acupuncture Science. Beijing: China Press of Traditional Chinese Medicine, 2008.

    Google Scholar 

  12. LIU Q, GONG H, LI Y Q. Sectional Anatomical Atlas of Sprague-Dawley Rat. Wuhan: Huazhong University of Science & Technology Press. 2010.

    Google Scholar 

  13. YAEGER C E, RINGACH D L, TRACHTENBERG J T. Neuromodulatory control of localized dendritic spiking in critical period cortex. Nature, 2019, 567(7746): 100–104.

    Article  CAS  Google Scholar 

  14. YIN Z Q. Research progress in pathogenesis of amblyopia. Zhongguo Xieshi Yu Xiaoer Yanke Zazhi, 2004, 12(1): 45–48.

    Google Scholar 

  15. MAN X F, LIN F S. Clinical research progress of visual electrophysiology in the pathogenesis of amblyopia. Fujian Yiyao Zazhi, 2002, 24(4): 110–112.

    Google Scholar 

  16. LIU Y, YU T, YIN Z Q. The visual cortex plasticity of adult rat after binocular form deprivation by pattern visual evoked potential. Zhonghua Shiyan Yanke Zazhi, 2011, 29(12): 1106–1110.

    Google Scholar 

  17. ZHOU T, GUO Y, GUO Y M, CHEN Z L. Study of the neural coding based on acupuncture electrical signals: a review. Zhong Xi Yi Jie He Xue Bao, 2008, 6(12): 1300–1304.

    Article  Google Scholar 

  18. MOLOTCHNIKOFF S, AÏTOUBAH J, BRETZNER F, SHUMIKHINA S, TAN Y F, GUILLEMOT J P. Comparative computations of spike synchronization in visual cortex of cats. Brain Res Brain Res Protoc, 2001, 6(3): 148–158.

    Article  CAS  Google Scholar 

  19. HIRATA Y, AIHARA K. Representing spike trains using constant sampling intervals. J Neurosci Methods, 2009, 183(2): 277–286.

    Article  Google Scholar 

  20. DING Y. Study on Neural Spike Sorting and Neural Coding. Hangzhou: Master Thesis of Hangzhou Dianzi University, 2010.

    Google Scholar 

  21. REICH D S, MECHLER F, PURPURA K P, VICTOR J D. Interspike intervals, receptive fields, and information encoding in primary visual cortex. J Neurosci, 2000, 20(5): 1964–1974.

    Article  CAS  Google Scholar 

  22. CREWTHER D P, CREWTHER S G. Neural site of strabismic amblyopia in cats: spatial frequency deficit in primary cortical neurons. Exp Brain Res, 1990, 79(3): 615–622.

    Article  CAS  Google Scholar 

  23. KIORPES L, KIPER D C, O’KEEFE L P, CAVANAUGH J R, MOVSHON J A. Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia. J Neurosci, 1998, 18(16): 6411–6424.

    Article  CAS  Google Scholar 

  24. ZHU T T, MA C B, YAN X K. Study on intervention mechanism of acupuncture for neuron abnormal neural coding in visual cortex area 17 of monocular deprivation rats. J Acupunct Tuina Sci, 2017, 15(4): 257–262.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (国家自然科学基金项目, No. 81860879, No. 81260560, No. 81660816); Project of Chinese Medicine Inheritance Innovation Platform of Gansu Province 甘肃省中医药传承创新平台项目); Key Talent Project of Gansu Province (甘肃省重点人才项目); Science and Technology Capacity Enhancement Project for Middle-aged and Young Scholars at Gansu University of Chinese Medicine (甘肃中医药大学校级中青年科技能力提升项目,, No. ZQ2015-15).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingke Yan  (严兴科) or Anguo Liu  (刘安国).

Additional information

Conflict of Interest

The authors declare that there is no potential conflict of interest in this article.

Statement of Human and Animal Rights

The treatment of animals conformed to the ethical criteria in this experiment.

First Author: HAO Xiaolu, master degree candidate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, X., Ma, C., Zhou, N. et al. Regulatory effect of acupuncture on electrical activity level of optic cortex in amblyopia model rats. J. Acupunct. Tuina. Sci. 20, 265–272 (2022). https://doi.org/10.1007/s11726-022-1323-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11726-022-1323-7

Keywords

关键词

中图分类号

文献标志码

Navigation