Skip to main content
Log in

Quantitative research technology of tuina manipulations

推拿手法的量化研究技术

  • Critical Review
  • Published:
Journal of Acupuncture and Tuina Science Aims and scope Submit manuscript

Abstract

Tuina is a physical therapy for treatment and prevention of diseases. The predecessors had summed up the systematic tuina manipulations through experiences. In order to study the scientificity and usability of the technology, the researchers established a mathematical model of tuina manipulations, and used video technology to capture the trajectory of the manipulations. Using the mechanical sensor to sense the real manipulations, researchers developed a tuina manipulation instrument and obtained a lot of basic mechanics data about the manipulation technology. Through the summary of the research results of the predecessors, accurate, true and comprehensive mechanical parameters of technology of tuina manipulations were obtained to guide the research and development of instruments of tuina manipulations, and promote the development of the discipline of tuina science.

概要

推拿是一种治疗和预防疾病的物理疗法。 前人在不断的生活积累中总结出了系统的推拿疗法。 为研究推拿的科学性和可用性, 研究人员建立了推拿手法的数学模型, 并利用视频技术捕捉手法轨迹, 利用力学传感器感触真实手法, 研发出了推拿手法检测仪器, 获得大量有关推拿手法的基础力学数据。 通过对前人的研究成果进行总结, 以获得精准、 真实、 全面的推拿手法力学参数, 用于指导推拿诊疗仪器的研发, 促进推拿学科的发展。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yuan SQ, Feng T. Encyclopedia of China. Beijing: Huaxia Publishing House, 1990: 992.

    Google Scholar 

  2. Wang XB. Research on the History of Chinese Ancient Tuina and Massage. Harbin: Master Thesis of Heilongjiang University of Chinese Medicine, 2009.

    Google Scholar 

  3. Lü XM. A brief history of folk massage treatment in ancient China. Zhongguo Minjian Liaofa, 2006, 14(8): 3–4.

    Google Scholar 

  4. Li HD. Research on Tuina Ancient Documents. Jinan: Doctor Thesis of Shandong University of Traditional Chinese Medicine, 2006.

    Google Scholar 

  5. Zhao Y. Historic lessons and considerations of ‘Longqing Event’ of massage science. Shanghai Zhongyiyao Daxue Xuebao, 2007, 21(5): 26–28.

    Google Scholar 

  6. Zhao Y. Thinking about the ups and downs of the Ming Dynasty hand medicine. Shanghai: State Conference Colloquia on Different Schools and Literature of Tuina, 2001.

    Google Scholar 

  7. Geng N. Operation Characteristics of Cervical Positionedrotation Ban-pulling Manipulation and Analysis of Its Parameters of Dynamics and Kinematics. Beijing: Master Thesis of Beijing University of Chinese Medicine, 2014.

    Google Scholar 

  8. Min YJ, Wang HS, Yan ZG, Shao SJ. Discussion on the application and research of sensor technology in acupuncture and moxibustion. Shanghai Zhenjiu Zazhi, 2006, 25(12): 27–29.

    Google Scholar 

  9. Chen WJ, Xu SX. Reducing arterial pressure by massaging the carotid sinus: a mathematical model study. Shanghai Shengwu Yixue Gongcheng, 2006, 27(2): 70–73.

    Google Scholar 

  10. Li YK, Chen JH, Qiu GC. Measurement technique for the cracking sounds during spinal manipulation. Diyi Junyi Daxue Xuebao, 2005, 25(4): 419–422.

    PubMed  Google Scholar 

  11. Hou XK, Dong F, Zhao WC. Study on the threedimensional motion of intact lumbar vertebrae when obliquely pulled. Zhongguo Gushang, 1996, 10(4): 5–7, 63.

    Google Scholar 

  12. Li SH. Research on Some Key Technologies of a Systematic for Synthetical Measurement of Chinese Medical Massage. Hefei: Doctor Thesis of University of Science and Technology of China, 2013.

    Google Scholar 

  13. Suga H. Theoretical analysis of a left-ventricular pumping model based on the systolic time-varying pressure-volume ratio. IEEE Trans Biomed Eng, 1971, 18(1): 47–55.

    Article  CAS  PubMed  Google Scholar 

  14. Zheng TS. Dynamic simulation model and simulation study of cardiovascular system dynamics. Guangdong Jixie Xueyuan Xuebao, 1992, 10(2): 17–24.

    Google Scholar 

  15. Xu SX, Di N, Lü L, Ji L. Analysis of the input impedance of pulsative flow through a vessel with mild stenosis amplitude oscillating radially. Yiyong Shengwu Lixue, 2000, 15(3): 157–161.

    Google Scholar 

  16. Xu SX, Ji L, Chew YT, Lü L, Mao XC. Hemodynamica on pulsatile flow through a vessel with mild stenosis amplitude oscillating radially. Yiyong Shengwu Lixue, 1999, 14(4): 202–207.

    Google Scholar 

  17. Lü L, Xu SX. An analysis of pressure and pressure gradient of pulsation flow through an elastic satraight tube with a mild stenosis amplitude oscillating in radial direction. Yiyong Shengwu Lixue, 1999, 14(3): 144–151.

    Google Scholar 

  18. Cheng WH, Lü L, Xu SX, Chew YT, Low HT, Yan JT, Shen GQ, Sun WQ, Xu J. Flux analysis of an artery with a moving stenosis forced by rolling manipulation. Yiyong Shengwu Lixue, 2003, 18(1): 1–5.

    Google Scholar 

  19. Xu SX, Ji L, Wang QW. Numerical investigation of effect of rolling manipulation of traditional Chinese medical massage on blood flow. Yingyong Shuxue He Lixue, 2005, 26(6): 694–700.

    CAS  Google Scholar 

  20. Bi S, Li YK, Zhao WD, Wang AY, Zhang Y, Zhang M, Zhang DW, Wang FG. Comparative study of simulated lumbar manipulation techniques using biomechanical and three-dimensional finite element models. Zhonghua Wuli Yixue Yu Kangfu Zazhi, 2002, 24(9): 16–19.

    Google Scholar 

  21. Li HB. Study of the Blood Flows by Lattice Boltzmann Method. Shanghai: Doctor Thesis of Fudan University, 2004.

    Google Scholar 

  22. Lü XY. Lattice Boltzmann Method Simulations of Blood Flowing in Elastic Tube. Shanghai: Doctor Thesis of Fudan University, 2006.

    Google Scholar 

  23. Jin L, Wang WX, Li HB, Tan HL. Lattice Blotzmann simulation model of rolling massage. Guangxi Shifan Daxue Xuebao (Ziran Kexue Ban), 2009, 27(1): 9–12.

    Google Scholar 

  24. Zhang CQ. Analysis of the Kinematical Feature of 5Kinds of Tuina Manipulations. Beijing: Master Thesis of China Academy of Chinese Medical Sciences, 2009.

    Google Scholar 

  25. Sun WQ, Yan JT. Theoretical and experimental study on the frequency of tuina manipulations. Anmo Yu Daoyin, 2002, 18(5): 2–4.

    Google Scholar 

  26. Yan XH, Yan JT, Gong L, Jiang SY. Study on standardization of tuina manipulation parameters. Shijie Kexue Jishu: Zhongyiyao Xiandaihua, 2015, 17(12): 2443–2450.

    Google Scholar 

  27. Yan XH, Yan JT, Gong L, Jiang SY. Discussion on manipulation classification based on analysis of sports biomechanics. Zhonghua Zhongyiyao Zazhi, 2017, 32(7): 3229–3231.

    Google Scholar 

  28. Klein P, Broers C, Feipel V, Salvia P, Van Geyt B, Dugailly PM, Rooze M. Global 3D head-trunk kinematics during cervical spine manipulation at different levels. Clin Biomech (Bristol, Avon), 2003, 18(9): 827–831.

    Article  CAS  Google Scholar 

  29. Ngan JM, Chow DH, Holmes AD. The kinematics and intra-and inter-therapist consistencies of lower cervical rotational manipulation. Med Eng Phys, 2005, 27(5): 395–401.

    Article  PubMed  Google Scholar 

  30. Meng L. TDL-I type massage force dynamic force tester was successfully developed. Shandong Zhongyi Xueyuan Xuebao, 1982, 6(3): 37.

    Google Scholar 

  31. Zeng QY. The Studies on the Kinetic Biomechanism of the Action Principles of Rolling Manipulation. Jinan: Master Thesis of Shandong University of Traditional Chinese Medicine, 2003.

    Google Scholar 

  32. Wang GC, Bi YS, Zhang SF, Zhou XF, Cheng DM. Determination and application of the dynamic curve of massage manipulation. Shandong Zhongyi Xueyuan Xuebao, 1982, 6(1): 72–76.

    Google Scholar 

  33. Kawchuk GN, Herzog W. Biomechanical characterization (fingerprinting) of five novel methods of cervical spine manipulation. J Manipulative Physiol Ther, 1993, 16(9): 573–577.

    CAS  PubMed  Google Scholar 

  34. Kawchuk GN, Herzog W, Hasler EM. Forces generated during spinal manipulative therapy of the cervical spine: a pilot study. J Manipulative Physiol Ther, 1992, 15(5): 275–278.

    CAS  PubMed  Google Scholar 

  35. Herzog W, Conway PJ, Kawchuk GN, Zhang Y, Hasler EM. Forces exerted during spinal manipulative therapy. Spine (Phila Pa 1976), 1993, 18(9): 1206–1212.

    Article  CAS  Google Scholar 

  36. Zhou XW, Xu SX, Xie ZY, Li XA, Chen SJ, Shen YY, Yang JH, Yan JT, Zhao Y, Xu J, Xu CP. Traditional Chinese medical massage manipulation monitor and analysis of resultant acting point locus. Yiyong Shengwu Lixue, 1996, 11(3): 179–183.

    Google Scholar 

  37. Qiu GC. The Measurement of Commonly Used Manipulative Force and Its Clinical Significance. Guangzhou: Master Thesis of Diyi Junyi Daxue, 2005.

    Google Scholar 

  38. Zhu LG, Zhong HG, Feng MS. Rotating manual operation mechanics measuring instrument: CN20072013552. 2008–02–13.

    Google Scholar 

  39. Feng MS. Experimental observation of the effects of mechanical measurement and simulation of the maneuvering method on the internal pressure of the cervical nucleus. Beijing: Master Thesis of China Academy of Chinese Medical Sciences, 2007.

    Google Scholar 

  40. Sun Y, Yin ZN, Xu YJ, Liu F. Research and progress of capacitive flexible tactile sensors. Weina Dianzi Jishu, 2017, 54(10): 684–693.

    Google Scholar 

  41. Shimojo M, Makino R, Namiki A, Ishikawa M, Suzuki T, Mabuchi K. A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method. IEEE Sens J, 2004, 4(5): 589–596.

    Article  Google Scholar 

  42. Heo JS, Chung JH, Lee JJ. Tactile sensor arrays using fiber Bragg grating sensors. Sensors & Actuators A: Physical, 2006, 126(2): 312–327.

    Article  CAS  Google Scholar 

  43. Krishna GM, Rajanna K. Tactile sensor based on piezoelectric resonance. IEEE Sens J, 2004, 4(5): 691–697.

    Article  Google Scholar 

  44. Shen CS, Shen F, Sun WQ, Qiu LK, Ge YJ, Yu Y. Research of three-axis tactile sensor based on pressure conductive rubber. Hangzhou: Fifth World Congress on Intelligent Control and Automation, 2004: 3750–3752.

    Google Scholar 

  45. Cheng DR. Research of Stretchable Tactile Sensor Based on Capacitors Array. Hangzhou: Master Thesis of Zhejiang University, 2017.

    Google Scholar 

  46. Huang Y, Liu P, Zhang YG, Ge YJ. Piezoresistive characteristics and its fitting method of conductive rubber for flexible tactile sensing. Zhongguo Kexue Jishu Daxue Xuebao, 2011, 41(3): 200–206.

    Google Scholar 

  47. Cao GH, Huang Y, Zhang W, Liu CX. Simulation and experiment research of a 3D flexible tactile sensor. Dianzi Celiang Yu Yiqi Xuebao, 2011, 25(2): 129–134.

    Google Scholar 

  48. Huang Y, Liu P, Huang Y, Ge YJ. Mechanical sensitivity research based on pressure-sensitive conductive composite material for flexible tactile sensor. Fudan Xuebao (Ziran Kexue Ban), 2009, 48(1): 46–52, 57.

    CAS  Google Scholar 

  49. Tan Y. Design and Implementation for Teaching and Training System of Chinese Manipulation Based on LabVIEW. Jinan: Master Thesis of Shandong University of Traditional Chinese Medicine, 2010.

    Google Scholar 

Download references

Acknowledgments

This work was supported by Scientific Project of National Science & Technology Pillar Program During the 12th Five-year Plan Period (“十二五”国家科技支撑计划 项目, No. 2012BAI25B06); Shanghai Scientific and Technological Innovation Project of Traditional Chinese Medicine ( 上海市中医药科技创新项目, No. ZYKC201602007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tang-yi Liu  (刘堂义).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Liu, Ty. Quantitative research technology of tuina manipulations. J. Acupunct. Tuina. Sci. 17, 99–104 (2019). https://doi.org/10.1007/s11726-019-1098-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11726-019-1098-7

Keywords

关键词

中图分类号

文献标志码

Navigation