Skip to main content
Log in

Free vibration analysis of cracked thin plates by quasi-convex coupled isogeometric-meshfree method

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

The free vibration analysis of cracked thin plates via a quasi-convex coupled isogeometric-meshfree method is presented. This formulation employs the consistently coupled isogeometric-meshfree strategy where a mixed basis vector of the convex B-splines is used to impose the consistency conditions throughout the whole problem domain. Meanwhile, the rigid body modes related to the mixed basis vector and reproducing conditions are also discussed. The mixed basis vector simultaneously offers the consistent isogeometric-meshfree coupling in the coupled region and the quasi-convex property for the meshfree shape functions in the meshfree region, which is particularly attractive for the vibration analysis. The quasi-convex meshfree shape functions mimic the isogeometric basis function as well as offer the meshfree nodal arrangement flexibility. Subsequently, this approach is exploited to study the free vibration analysis of cracked plates, in which the plate geometry is exactly represented by the isogeometric basis functions, while the cracks are discretized by meshfree nodes and highly smoothing approximation is invoked in the rest of the problem domain. The efficacy of the present method is illustrated through several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lynn P P, Kumbasar N. Free vibration of thin rectangular plates having narrow cracks with simply supported edges. Developments in Mechanics, 1967, 4: 911–928

    Google Scholar 

  2. Stahl B, Keer L M. Vibration and stability of cracked rectangular plates. International Journal of Solids and Structures, 1972, 8(1): 69–91

    Article  MATH  Google Scholar 

  3. Nezu K. Free vibration of a simply-supported rectangular plate with a straight through-notch. Bulletin of the Japan Society of Mechanical Engineers, 1982, 25(199): 16–23

    Article  Google Scholar 

  4. Solecki R. Bending vibration of a simply supported rectangular plate with a crack parallel to one edge. Engineering Fracture Mechanics, 1983, 18(6): 1111–1118

    Article  Google Scholar 

  5. Hirano Y, Okazaki K. Vibration of cracked rectangular plates. Bulletin of the Japan Society of Mechanical Engineers, 1980, 23(179): 732–740

    Article  MathSciNet  Google Scholar 

  6. Leissa A W, Mc Gee O G, Huang C S. Vibration of circular plates having V-notches or sharp radial cracks. Journal of Sound and Vibration, 1993, 161(2): 227–239

    Article  MATH  Google Scholar 

  7. Liew K M, Hung K C, Lim M K. A solution method for analysis of cracked plates under vibration. Engineering Fracture Mechanics, 1994, 48(3): 393–404

    Article  Google Scholar 

  8. Huang C S, Leissa A W. Vibration analysis of rectangular plates with side cracks via the Ritz method. Journal of Sound and Vibration, 2009, 323(3–5): 974–988

    Article  Google Scholar 

  9. Zienkiewicz O C, Taylor R L. The Finite Element Method for Solid and Structural Mechanics. Butterworth-Heinemann, 2005

    Google Scholar 

  10. Belytschko T, Lu Y Y, Gu L. Element-free Gakerkin methods. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229–256

    Article  MATH  MathSciNet  Google Scholar 

  11. Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 1995, 20(8–9): 1081–1106

    Article  MATH  MathSciNet  Google Scholar 

  12. Sukumar N. Construction of polygonal interpolants: a maximum entropy approach. International Journal for Numerical Methods in Engineering, 2004, 61(12): 2159–2181

    Article  MATH  MathSciNet  Google Scholar 

  13. Arroyo M, Ortiz M. Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. International Journal for Numerical Methods in Engineering, 2006, 65(13): 2167–2202

    Article  MATH  MathSciNet  Google Scholar 

  14. Rabczuk T, Samaniego E. Discontinuous modelling of shear bands using adaptive meshfree methods. Computer Methods in Applied Mechanics and Engineering, 2008, 197(6): 641–658

    Article  MATH  MathSciNet  Google Scholar 

  15. Chen J S, Chi S W, Hu H Y. Recent developments in stabilized Galerkin and collocation meshfree methods. Computer Assisted Mechanics and Engineering Sciences, 2011, 18: 3–21

    MathSciNet  Google Scholar 

  16. Wang D, Chen P. Quasi-convex reproducing kernel meshfree method. Computational Mechanics, 2014, 54(3): 689–709

    Article  MATH  MathSciNet  Google Scholar 

  17. Kwok O L A, Guan P C, Cheng W P, Sun C T. Semi-Lagrangian reproducing kernel particle method for slope stability analysis and post-failure simulation. KSCE Journal of Civil Engineering, 2015, 19(1): 107–115

    Article  Google Scholar 

  18. Hughes T J R, Cottrell J A, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39–41): 4135–4195

    Article  MATH  MathSciNet  Google Scholar 

  19. Cottrell J A, Hughes T J R, Reali A. Studies of refinement and continuity in isogeometric structural analysis. Computer Methods in Applied Mechanics and Engineering, 2007, 196(41): 4160–4183

    Article  MATH  Google Scholar 

  20. De Luycker E, Benson D J, Belytschko T, Bazilevs Y, Hsu M C. X-FEM in isogeometric analysis for linear fracture mechanics. International Journal for Numerical Methods in Engineering, 2011, 87(6): 541–565

    Article  MATH  MathSciNet  Google Scholar 

  21. Bazilevs Y, Hsu M C, Scott M A. Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Computer Methods in Applied Mechanics and Engineering, 2012, 249: 28–41

    Article  MathSciNet  Google Scholar 

  22. Wang D, Liu W, Zhang H. Novel higher order mass matrices for isogeometric structural vibration analysis. Computer Methods in Applied Mechanics and Engineering, 2013, 260: 92–108

    Article  MATH  MathSciNet  Google Scholar 

  23. Thai C H, Nguyen-Xuan H, Bordas S P A, Nguyen-Thanh N, Rabczuk T. Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory. Mechanics of Advanced Materials and Structures, 2014, 22(6): 451–469

    Article  Google Scholar 

  24. Elguedj T, Hughes T J R. Isogeometric analysis of nearly incompressible large strain plasticity. Computer Methods in Applied Mechanics and Engineering, 2014, 288: 388–416

    Article  MathSciNet  Google Scholar 

  25. Zuo B Q, Huang Z D, Wang YW, Wu Z J. Isogeometric analysis for CSG models. Computer Methods in Applied Mechanics and Engineering, 2015, 285: 102–124

    Article  MathSciNet  Google Scholar 

  26. Wang D, Xuan J. An improved NURBS-based isogeometric analysis with enhanced treatment of essential boundary conditions. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2425–2436

    Article  MATH  MathSciNet  Google Scholar 

  27. Krysl P, Belytschko T. Analysis of thin plates by the element-free Galerkin method. Computational Mechanics, 1995, 16: 1–10

    Article  MathSciNet  Google Scholar 

  28. Li S, Lu H, Han W, Liu W K, Simkins D C. Reproducing kernel element method, Part II. Global conforming Im=Cn. Computer Methods in Applied Mechanics and Engineering, 2004, 193(12–14): 953–987

    Article  MATH  MathSciNet  Google Scholar 

  29. Rabczuk T, Areias P M A, Belytschko T. A meshfree thin shell method for nonlinear dynamic fracture. International Journal for Numerical Methods in Engineering, 2007, 72(5): 524–548

    Article  MATH  MathSciNet  Google Scholar 

  30. Wang D, Peng H. A Hermite reproducing kernel Galerkin meshfree approach for buckling analysis of thin plates. Computational Mechanics, 2013, 51(6): 1013–1029

    Article  MATH  MathSciNet  Google Scholar 

  31. Kiendl J, Bletzinger K U, Linhard J, Wüchner R. Isogeometric shell analysis with Kirchhoff–Love elements. Computer Methods in Applied Mechanics and Engineering, 2009, 198(49): 3902–3914

    Article  MATH  MathSciNet  Google Scholar 

  32. Zhang H, Wang D, Xuan J. Non-uniform rational B spline-based isogeometric finite element analysis of thin beams and plates. Chinese Quarterly of Mechanics, 2010, 31: 469–477

    Google Scholar 

  33. Benson D J, Bazilevs Y, Hsu M C, Hughes T J R. A large deformation, rotation-free, isogeometric shell. Computer Methods in Applied Mechanics and Engineering, 2011, 200(13): 1367–1378

    Article  MATH  MathSciNet  Google Scholar 

  34. Nguyen-Thanh N, Kiendl J, Nguyen-Xuan H, Wüchner R, Bletzinger K U, Bazilevs Y, Rabczuk T. Rotation free isogeometric thin shell analysis using PHT-splines. Computer Methods in Applied Mechanics and Engineering, 2011, 200(47): 3410–3424

    Article  MATH  MathSciNet  Google Scholar 

  35. Shojaee S, Izadpanah E, Valizadeh N, Kiendl J. Free vibration analysis of thin plates by using a NURBS-based isogeometric approach. Finite Elements in Analysis and Design, 2012, 61: 23–34

    Article  MathSciNet  Google Scholar 

  36. Echter R, Oesterle B, Bischoff M. A hierarchic family of isogeometric shell finite elements. Computer Methods in Applied Mechanics and Engineering, 2013, 254: 170–180

    Article  MATH  MathSciNet  Google Scholar 

  37. Wang D, Liu W, Zhang H. Superconvergent isogeometric free vibration analysis of Euler-Bernoulli beams and Kirchhoff plates with new higher order mass matrices. Computer Methods in Applied Mechanics and Engineering, 2015, 286: 230–267

    Article  MathSciNet  Google Scholar 

  38. Organ D, Fleming M, Terry T, Belytschko T. Continuous meshless approximations for nonconvex bodies by diffraction and transparency. Computational Mechanics, 1996, 18(3): 225–235

    Article  MATH  Google Scholar 

  39. Belytschko T, Fleming M. Smoothing, enrichment and contact in the element-free Galerkin method. Computers & Structures, 1999, 71(2): 173–195

    Article  MathSciNet  Google Scholar 

  40. Rabczuk T, Belytschko T. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343

    Article  MATH  Google Scholar 

  41. De Luycker E, Benson D J, Belytschko T, Bazilevs Y, Hsu M C. XFEM in isogeometric analysis for linear fracture mechanics. International Journal for Numerical Methods in Engineering, 2011, 87(6): 541–565

    Article  MATH  MathSciNet  Google Scholar 

  42. Ghorashi S S, Valizadeh N, Mohammadi S. Extended isogeometric analysis for simulation of stationary and propagating cracks. International Journal for Numerical Methods in Engineering, 2012, 89(9): 1069–1101

    Article  MATH  MathSciNet  Google Scholar 

  43. Ghorashi S S, Valizadeh N, Mohammadi S, Rabczuk T. T-spline based XIGA for fracture analysis of orthotropic media. Computers & Structures, 2015, 147: 138–146

    Article  Google Scholar 

  44. Tran L V, Nguyan V P, Wahab M A, Nguyan-Xuan H. An extended isogeometric analysis for vibration of cracked FGM plates using higher-order shear deformation theory. arXiv preprint arXiv: 1403.0306, 2014

    Google Scholar 

  45. Nguyen-Thanh N, Valizadeh N, Nguyen M N, Nguyen-Xuan H, Zhuang X, Areias P, Zi G, Bazilevs Y, De Lorenzis L, Rabczuk T. An extended isogeometric thin shell analysis based on Kirchhoff- Love theory. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 265–291

    Article  MathSciNet  Google Scholar 

  46. Zhang H, Wang D. An isogeometric enriched quasi-convex meshfree formulation with application to material interface modeling. Engineering Analysis with Boundary Elements, 2015, 60: 37–50

    Article  MathSciNet  Google Scholar 

  47. Wang D, Zhang H. A consistently coupled isogeometric-meshfree method. Computer Methods in Applied Mechanics and Engineering, 2014, 268: 843–870

    Article  MATH  MathSciNet  Google Scholar 

  48. Zhang H, Wang D, Liu W. Isogeometric-meshfree coupled analysis of Kirchhoff plates. Advances in Structural Engineering, 2014, 17(8): 1159–1176

    Article  MathSciNet  Google Scholar 

  49. Marsden M J. An identity for spline functions with applications to variation-diminishing spline approximation. Journal of Approximation Theory, 1970, 3(1): 7–49

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wu, J. & Wang, D. Free vibration analysis of cracked thin plates by quasi-convex coupled isogeometric-meshfree method. Front. Struct. Civ. Eng. 9, 405–419 (2015). https://doi.org/10.1007/s11709-015-0310-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-015-0310-1

Keywords

Navigation