Skip to main content
Log in

Realization of energy-saving glass using photonic crystals

  • Research Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

This work successfully developed an energysaving glass with wavelength selectivity. The glass is composed of a SiO2 substrate and two layers of threedimensional photonic crystals. Each crystal is composed of identical and transparent polystyrene spheres after their self-assembling. The glass then possesses dual photonic band gaps in the near-infrared region to suppress penetration of thermal radiation. Experimental results show that the energy-saving glass decreases temperature increment in a mini-house. Moreover, the temperature after thermal equilibrium is lower than that inside a counterpart using ordinary glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Incropera F P, Dewitt D P, Bergman T L, Lavine A S. Foundations of Heat Transfer. 6th ed. Hoboken: Wiley, 2013

    Google Scholar 

  2. Iqbal M. An Introduction to Solar Radiation. Amsterdam: Elsevier, 2012

    Google Scholar 

  3. Kiani G I, Karlsson A, Olsson L, Esselle K P. Glass characterization for designing frequency selective surfaces to improve transmission through energy saving glass windows. In: Asia-Pacific Microwave Conference 2007 (APMC 2007). Bangkok, Thailand, 2007, 4554974

    Google Scholar 

  4. Vasiliev M, Alghamedi R, Nur-E-Alam M, Alameh K. Photonic microstructures for energy-generating clear glass and net-zero energy buildings. Scientific Reports, 2016, 6(1): 31831

    Article  Google Scholar 

  5. Ferrara M, Castaldo A, Esposito S, D’Angelo A, Guglielmo A, Antonaia A. AlN-Ag based low-emission sputtered coatings for high visible transmittance window. Surface and Coatings Technology, 2016, 295: 2–7

    Article  Google Scholar 

  6. Liu Z, Xu W, Lin A, He T, Lin F. Deposition of NaGd(WO4)2:Eu3+/Bi3+ films on glass substrates and potential applications in white light emitting diodes. Energy and Building, 2016, 113: 9–14

    Article  Google Scholar 

  7. Ho C C, Chen Y B, Shih F Y. Tailoring broadband radiative properties of glass with silver nano-pillars for saving energy. International Journal of Thermal Sciences, 2016, 102: 17–25

    Article  Google Scholar 

  8. Fu C, Zhang Z M. Thermal radiative properties of metamaterials and other nanostructured materials: a review. Frontiers of Energy and Power Engineering in China, 2009, 3(1): 11–26

    Article  Google Scholar 

  9. Huang C L, Ho C C, Chen Y B. Development of an energy-saving glass using two-dimensional periodic nano-structures. Energy and Building, 2015, 86: 589–594

    Article  Google Scholar 

  10. Madani A, Roshan Entezar S. Optical properties of one-dimensional photonic crystals containing graphene sheets. Physica B, Condensed Matter, 2013, 431: 1–5

    Article  Google Scholar 

  11. Englund D, Fattal D, Waks E, Solomon G, Zhang B, Nakaoka T, Arakawa Y, Yamamoto Y, Vucković J. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Physical Review Letters, 2005, 95(1): 013904

    Article  Google Scholar 

  12. Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 1987, 58(20): 2059–2062

    Article  Google Scholar 

  13. John S. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 1987, 58(23): 2486–2489

    Article  Google Scholar 

  14. Kondo T, Hirano S, Yanagishita T, Nguyen N T, Schmuki P, Masuda H. Two-dimensional photonic crystals based on anodic porous TiO2 with ideally ordered hole arrangement. Applied Physics Express, 2016, 9(10): 102001

    Article  Google Scholar 

  15. Egen M, Voss R, Griesebock B, Zentel R, Romanov S, Torres C S. Heterostructures of polymer photonic crystal films. Chemistry of Materials, 2003, 15(20): 3786–3792

    Article  Google Scholar 

  16. Seelig E W, Tang B, Yamilov A, Cao H, Chang R P H. Selfassembled 3D photonic crystals from ZnO colloidal spheres. Materials Chemistry and Physics, 2003, 80(1): 257–263

    Article  Google Scholar 

  17. Lash M H, Fedorchak M V, Little S R, McCarthy J J. Fabrication and characterization of non-Brownian particle-based crystals. Langmuir, 2015, 31(3): 898–905

    Article  Google Scholar 

  18. Deotare P B, Kogos L C, Bulu I, Loncar M. Photonic crystal nanobeam cavities for tunable filter and router applications. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(2): 3600210

    Article  Google Scholar 

  19. Goyal A K, Dutta H S, Pal S. Recent advances and progress in photonic crystal-based gas sensors. Journal of Physics D, Applied Physics, 2017, 50(20): 203001

    Article  Google Scholar 

  20. Wehrspohn R B, Schweizer S L, Gesemann B, Pergande D, Geppert T M, Moretton S, Lambrecht A. Macroporous silicon and its application in sensing. Comptes Rendus Chimie, 2013, 16(1): 51–58

    Article  Google Scholar 

  21. Florescu M, Lee H, Stimpson A J, Dowling J. Thermal emission and absorption of radiation in finite inverted-opal photonic crystals. Physical Review A, 2005, 72(3): 033821

    Article  Google Scholar 

  22. Luan P G, Chen C C, eds. Photonic Cystals. 2nd ed. Taipei: Wunan, 2010 (in Chinese)

    Google Scholar 

  23. Prather D W, Shi S, Sharkawy A, Murakowski J, Schneider G J. Photonic Crystals Theory, Applications, and Fabrication. Hoboken: Wiley, 2009

    Google Scholar 

  24. Miklyaev Y V, Meisel D C, Blanco A, von Freymann G, Busch K, Koch W, Enkrich C, Deubel M, Wegener M. Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations. Applied Physics Letters, 2003, 82(8): 1284–1286

    Article  Google Scholar 

  25. Crippa M, Bianchi A, Cristofori D, D’Arienzo M, Merletti F, Morazzoni F, Scotti R, Simonutti R. High dielectric constant rutile–polystyrene composite with enhanced percolative threshold. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2013, 1(3): 484–492

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by “the Ministry of Science and Technology (MOST) in Taiwan (Grant Nos. MOST-104-2628- E-007-006-MY2 and MOST-105-3113-E-006-002).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen-Hsiang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YH., Liao, LH. & Chen, YB. Realization of energy-saving glass using photonic crystals. Front. Energy 12, 178–184 (2018). https://doi.org/10.1007/s11708-018-0523-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-018-0523-9

Keywords

Navigation