Skip to main content
Log in

Thermal reffusivity: uncovering phonon behavior, structural defects, and domain size

  • Review Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

To understand the relation between different nanostructures and thermal properties, a simple yet effective model is in demand for characterizing the underlying phonons and electrons scattering mechanisms. Herein, we make a systematic review on the newly developed thermal reffusivity theory. Like electrical resistivity which has been historically used as a theory for analyzing structural domain size and defect levels of metals, the thermal reffusivity can also uncover phonon behavior, structure defects and domain size of materials. We highlight that this new theory can be used for not only metals, but also nonmetals, even for amorphous materials. From the thermal reffusivity against temperature curves, the Debye temperature of the material and the ideal thermal diffusivity of single perfect crystal can be evaluated. From the residual thermal reffusivity at the 0 K limit, the structural thermal domain (STD) size of crystalline and amorphous materials can be obtained. The difference of white hair and normal black hair from heat conduction perspective is reported for the first time. Loss of melanin results in a worse thermal protection and a larger STD size in the white hair. By reviewing the different variation of thermal reffusivity against decreasing temperature profiles, we conclude that they reflected the structural connection in the materials. Ultimately, the future application of thermal reffusivity theory in studying 2D materials and amorphous materials is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simon S H. The Oxford Sold State Basics. Oxford: Oxford University Press, 2013

    MATH  Google Scholar 

  2. Jackson H E, Walker C T. Thermal conductivity, second sound, and phonon-phonon interactions in NaF. Physical Review B: Condensed Matter and Materials Physics, 1971, 3(4): 1428–1439

    Article  Google Scholar 

  3. Jackson H E, Walker C T, Mcnelly T F. Second sound in NaF. Physical Review Letters, 1970, 25(1): 26–28

    Article  Google Scholar 

  4. Kittel C, Allen K R. Thermal physics. Physics Today, 1970, 23(8): 61–63

    Article  Google Scholar 

  5. Kittel C, Holcomb D F. Introduction to solid state physics. American Journal of Physics, 1967, 35(6): 547–548

    Article  Google Scholar 

  6. Mayadas A F, Shatzkes M. Electrical-resistivity model for polycrystalline films-case of arbitrary reflection at external surfaces. 1970, 1(4): 1382–1389

    Google Scholar 

  7. Chelikowsky J R, Louie S G. Quantum Theory of Real Materials. Berlin: Springer, 2012

    Google Scholar 

  8. Xu Z L, Wang X W, Xie H Q. Promoted electron transport and sustained phonon transport by DNA down to 10K. Polymer, 2014, 55(24): 6373–6380

    Article  Google Scholar 

  9. Clusius K, Losa C G. Low temperature research results XIV. The atomic and electronic heat of rhodium and irrdium between 10°K and 273°K. Zeitschrift Fur Naturforschung A, 1955, 10(7): 545–551

    Google Scholar 

  10. Cheng Z, Liu L, Xu S, Lu M, Wang X. Temperature dependence of electrical and thermal conduction in single silver nanowire. Scientific Reports, 2015, 5: 10718

    Article  Google Scholar 

  11. Kittel C, Masi J F. Introduction to solid state physics. Physics Today, 1957, 10(6): 43–44

    Article  Google Scholar 

  12. Xie Y S, Xu Z, Xu S, Cheng Z, Hashemi N. The defect level and ideal thermal conductivity of graphene uncovered by residual thermal reffusivity at the 0K limit. Nanoscale, 2015, 7(22): 10101–10110

    Article  Google Scholar 

  13. Zhang J C, Huang X, Yue Y, Wang J, Wang X. Dynamic response of graphene to thermal impulse. Physical Review B, 2011, 84(23): 235116

    Article  Google Scholar 

  14. Denault K A, Brgoch J, Kloß S D, Gaultois M W, Siewenie J. Average and local structure, debye temperature, and structural rigidity in some oxide compounds related to phosphor hosts. Acs Applied Materials & Interfaces, 2015, 7(13): 7264–7272

    Article  Google Scholar 

  15. Chen S S, Wu Q, Mishra C, Kang J, Zhang H. Thermal conductivity of isotopically modified graphene. Nature Materials, 2012, 11(3): 203–207

    Article  Google Scholar 

  16. Liu J, Xu Z, Cheng Z, Xu S, Wang X. Thermal conductivity of ultrahigh molecular weight polyethylene crystal: defect effect uncovered by 0K limit phonon diffusion. Acs Applied Materials & Interfaces, 2015, 7(49): 27279–27288

    Article  Google Scholar 

  17. Klemens P G, Pedraza D F. Thermal-conductivity of graphite in the basal-plane. Carbon, 1994, 32(4): 735–741

    Article  Google Scholar 

  18. Henry A, Chen G. High thermal conductivity of single polyethylene chains using molecular dynamics simulations. Physical Review Letters, 2008, 101(23): 235502

    Article  Google Scholar 

  19. Xie Y S, Yuan P, Wang T, Hashemi N, Wang X. Switch on the high thermal conductivity of graphene paper. Nanoscale, 2016, 8(40): 17581–17597

    Article  Google Scholar 

  20. Liu J, Qu W, Xie Y, Zhu B, Wang T. Thermal conductivity and annealing effect on structure of lignin-based microscale carbon fibers. Carbon, 2017, 121: 35–47

    Article  Google Scholar 

  21. Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558–1565

    Article  Google Scholar 

  22. Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J. Ultralight and highly compressible graphene aerogels. Advanced Materials, 2013, 25(15): 2219–2223

    Article  Google Scholar 

  23. Kadir M, Wang X, Zhu B, Liu J, Harland D. The structure of the “Amorphous” matrix of keratins. Journal of Structural Biology, 2017, 198(2): 116–123

    Article  Google Scholar 

  24. Sarsfield B A, Futernik S, Hilden J L, Yin S, Young G. Powder Xray diffraction detection of crystalline phases in amorphous pharmaceuticals. Powder Diffraction, 2006, 20(2): 178–178

    Google Scholar 

  25. Gouadec G, Colomban P. Raman spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Progress in Crystal Growth and Characterization of Materials, 2007, 53(1): 1–56

    Article  Google Scholar 

  26. Svergun D I, Petoukhov M V, Koch M H J. Determination of domain structure of proteins from X-Ray solution scattering. Biophysical Journal, 2001, 80(6): 2946–2953

    Article  Google Scholar 

  27. Williams A C, Edwards H G M, Barry B W. Raman spectra of human keratotic biopolymers: skin, callus, hair and nail. Journal of Raman Spectroscopy: JRS, 1994, 25(1): 95–98

    Article  Google Scholar 

  28. Barhoumi A, Zhang D, Tam F, Halas N J. Surface-enhanced Raman spectroscopy of DNA. Journal of the American Chemical Society, 2008, 130(16): 5523–5529

    Article  Google Scholar 

  29. Xu S, Tang X, Yue Y, Wang X. Sub-micron imaging of sub-surface nanocrystalline structure in silicon. Journal of Raman Spectroscopy, 2013, 44(11): 1523–1528

    Article  Google Scholar 

  30. Matsuo H, Walters K J, Teruya K, Tanaka T, Gassner G T. Identification by NMR spectroscopy of residues at contact surfaces in large, slowly exchanging macromolecular complexes. Journal of the American Chemical Society, 1999, 121(42): 9903–9904

    Article  Google Scholar 

  31. Cahill D G, Pohl R O. Lattice vibrations and heat transport in crystals and glasses. Annual Review of Physical Chemistry, 1988, 39(1): 93–121

    Article  Google Scholar 

  32. Pohl R O, Liu X, Thompson E. Low-temperature thermal conductivity and acoustic attenuation in amorphous solids. Reviews of Modern Physics, 2002, 74(4): 991–1013

    Article  Google Scholar 

  33. Xu Z L. Thermal transport in DNA. Dissertation for the Doctoral Degree. Ames: Iowa State University, 2015

    Google Scholar 

  34. Liu G Q, Lin H, Tang X, Bergler K, Wang X. Characterization of thermal transport in one-dimensional solid materials. Jove-Journal of Visualized Experiments, 2014(83): e51144

    Google Scholar 

  35. Guo J Q, Wang X W, Wang T. Thermal characterization of microscale conductive and nonconductive wires using transient electrothermal technique. Journal of Applied Physics, 2007, 101(6): 063537–063537-7

    Article  MathSciNet  Google Scholar 

  36. Deng C H, Sun Y, Pan L, Wang T, Xie Y. Thermal diffusivity of a single carbon nanocoil: uncovering the correlation with temperature and domain size. Acs Nano, 2016, 10(10): 9710–9719

    Article  Google Scholar 

  37. Achterhold K, Keppler C, Ostermann A, Van B U, Sturhahn W. Vibrational dynamics of myoglobin determined by the phonon-assisted ssbauer effect. Physical Review E, 2002, 65(5): 051916

    Article  Google Scholar 

  38. Kadir M, Wang X, Zhu B, Liu J, Harland D. The structure of the “amorphous” matrix of keratins. Journal of Structural Biology, 2017, 198(2): 116–123

    Article  Google Scholar 

  39. Xie Y S, Xu S, Xu Z, Wu H, Deng C. Interface-mediated extremely low thermal conductivity of graphene aerogel. Carbon, 2016, 98: 381–390

    Article  Google Scholar 

Download references

Acknowledgements

Support of this work by National Science Foundation (CBET1235852, CMMI1264399), Department of Energy (DENE0000671, DE-EE0007686), and Iowa Energy Center (MG-16-025, OG-17-005) is gratefully acknowledged. Y. Xie is grateful to the China Scholarship Council for the great support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinwei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Zhu, B., Liu, J. et al. Thermal reffusivity: uncovering phonon behavior, structural defects, and domain size. Front. Energy 12, 143–157 (2018). https://doi.org/10.1007/s11708-018-0520-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-018-0520-z

Keywords

Navigation