Skip to main content
Log in

On the transformation textures influenced by deformation in electrical steels, high manganese steels and pure titanium sheets

  • Perspective
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Transformation texture is normally different to deformation and recrystallization textures, thus influencing materials properties differently. As deformation and recrystallization are often inseparable to transformation in materials which shows a variety in types such as diffusional or non-diffusional transformations, different phenomena or rules of strengthening transformation textures occur. This paper summarizes the complicated phenomena and rules by comparison of a lot of authors’ published and unpublished data collected from mainly electrical steels, high manganese steels and pure titanium sheets. Three kinds of influencing deformation are identified, namely the dynamic transformation with concurrent deformation and transformation, the transformation preceded by deformation and recrystallization and the surface effect induced transformation, and the textures related with them develop in different mechanisms. It is stressed that surface effect induced transformation is particularly effective to enhance transformation texture. It is also shown that the materials properties are also improved by controlled transformation textures, in particular in electrical steels. It is hoped that these phenomena and processing techniques are beneficial to the establishment of transformation texture theory and property improvement in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sung J K, Lee D N, Wang D H, et al. Efficient generation of cube-on-face crystallographic texture in iron and its alloys. ISIJ International, 2011, 51(2): 284–290

    Article  CAS  Google Scholar 

  2. Sung J K, Koo Y M. Magnetic properties of Fe and Fe-Si alloys with {1 0 0}〈0 v w〉 texture. Journal of Applied Physics, 2013, 113(17): 17A338

    Article  Google Scholar 

  3. Kovac F, Dzubinsky M, Sidor Y. Columnar grain growth in non-oriented electrical steels. Journal of Magnetism and Magnetic Materials, 2004, 269(3): 333–340

    Article  CAS  Google Scholar 

  4. Xie L, He M, Sun L, et al. Columnar grain growth in non-oriented electrical steels via plastic deformation of an initial columnar-grained solidification microstructure. Materials Letters, 2020, 258: 126797

    Article  CAS  Google Scholar 

  5. Ahn Y K, Jeong Y K, Kim T Y, et al. Texture evolution of non-oriented electrical steel analyzed by EBSD and in situ XRD during the phase transformation from γ to α. Materials Today Communications, 2020, 25:101307

    Article  CAS  Google Scholar 

  6. Kwon S B, Ahn Y K, Jeong Y K, et al. Evolution of cube-on-face texture in Fe—1%Si steel induced by physical contact during the phase transformation from γ to α. Materials Characterization, 2020, 165: 110380

    Article  CAS  Google Scholar 

  7. Tomida T, Wakita M, Yasuyama M, et al. Memory effects of transformation textures in steel and its prediction by the double Kurdjumov-Sachs relation. Acta Materialia, 2013, 61(8): 2828–2839

    Article  CAS  Google Scholar 

  8. Tomida T. Variant selection mechanism by elastic anisotropy and double K—S relation for transformation texture in steel; difference between martensite and ferrite. Acta Materialia, 2018, 146: 25–41

    Article  CAS  Google Scholar 

  9. Tomida T. A new process to develop (1 0 0) texture in silicon steel sheets. Journal of Materials Engineering and Performance, 1996, 5(3): 316–322

    Article  CAS  Google Scholar 

  10. Tomida T, Tanaka T. Development of (1 0 0) texture in silicon steel sheets by removal of manganese and decarburization. ISIJ International, 1995, 35(5): 548–556

    Article  CAS  Google Scholar 

  11. Tomida T. (100)-Textured 3% silicon steel sheets by manganese removal and decarburization. Journal of Applied Physics, 1996, 79(8): 5443–5445

    Article  CAS  Google Scholar 

  12. Mao W M, Wu Y, Yu Y N, et al. Formation mechanism of texture in a new type of doubly oriented cold rolled steel. Iron and Steel, 2002, 37(8): 53–57 (in Chinese)

    CAS  Google Scholar 

  13. Liu L Y, Yang P, Ma D D, et al. Surface effect induced phase transformation by Mn-removal during annealing and its textures in cold-rolled high manganese transformation-induced plasticity steel. Journal of Iron and Steel Research International, 2022, doi: https://doi.org/10.1007/s42243-021-00631-0 (in press)

  14. Foul A, Aranas C, Guo B, et al. Dynamic transformation of α → β titanium at temperatures below the β-transus in commercially pure titanium. Materials Science and Engineering A, 2018, 722: 156–159

    Article  CAS  Google Scholar 

  15. Dehghan-Manshadi A, Dippenaar R J. Strain-induced phase transformation during thermo-mechanical processing of titanium alloys. Materials Science and Engineering A, 2012, 552: 451–456

    Article  CAS  Google Scholar 

  16. Yang P, Cui F E, Chang S H, et al. Analysis of textural features during ferrite refinement deformation-enhanced transformation in a low carbon steel. Chinese Journal of Materials Research, 2003, 17(5): 510–519 (in Chinese)

    CAS  Google Scholar 

  17. Ray R K, Jonas J J. Transformation textures in steels. International Materials Reviews, 1990, 35(1): 1–36

    Article  Google Scholar 

  18. Xie L, Yang P, Zhang N, et al. Formation of {100} textured columnar grain structure in a non-oriented electrical steel by phase transformation. Journal of Magnetism and Magnetic Materials, 2014, 356: 1–4

    Article  CAS  Google Scholar 

  19. Xie L, Yang P, Zhang N, et al. Texture optimization for intermediate Si-containing non-oriented electrical steel. Journal of Materials Engineering and Performance, 2014, 23(11): 3849–3858

    Article  CAS  Google Scholar 

  20. Xie L, Yang P, Xia D S, et al. Microstructure and texture evolution in a non-oriented electrical steel during γ–α transformation under various atmosphere conditions. Journal of Magnetism and Magnetic Materials, 2015, 374: 655–662

    Article  CAS  Google Scholar 

  21. Zhang L W, Yang P, Wang J H, et al. Transformation of {1 0 0} texture induced by surface effect in ultra-low carbon electrical steel. Journal of Materials Science, 2016, 51(17): 8087–8097

    Article  CAS  Google Scholar 

  22. Zhang L W, Yang P, Mao W M. Opposite relationship between orientation selection and texture memory in the deformed electrical steel sheets during α → γ → α transformation. Journal of Materials Science and Technology, 2017, 33(12): 1522–1530

    Article  CAS  Google Scholar 

  23. Zhang L W, Yang P, Mao W M. Phenomena of Σ3 and orientation gradients in an electrical steel applied α → γ → α transformation. Acta Metallurgica Sinica, 2017, 53(1): 19–30 (in Chinese)

    CAS  Google Scholar 

  24. Wang J H, Yang P, Mao W M, et al. Orientation gradient on surface of non-oriented electrical steel annealed by γ → α transformation. Journal of Iron and Steel Research International, 2020, 27(1): 88–95

    Article  CAS  Google Scholar 

  25. Yang P, Xia D S, Wang J H, et al. Influence of processing parameters on microstructures, textures and magnetic properties in aFe-0.43Si-0.5Mn electrical steel subjected to phase transformation treatment. Proceeding of the 11th annual Chinese Iron and Steel Congress, Beijing, China, 2017, 6–12 (in Chinese)

  26. Yang P, Zhang L W, Wang J H, et al. Improvement of texture and magnetic properties by surface effect induced transformation in non-oriented Fe-0.82Si-1.37Mn steel sheets. Steel Research International, 2018, 89(12): 1800045

    Article  Google Scholar 

  27. Wang J H, Yang P, Zhang L W, et al. Formation of a sharp {1 0 0} 〈0 1 1〉 texture in Fe-3%Si-1.7%Mn-0.05%C silicon steel sheets. Journal of Materials Science, 2016, 51(22): 10116–10126

    Article  CAS  Google Scholar 

  28. Wang J H, Yang P, Mao W M. Retention and evolution of texture in an electrical steel under vacuum annealing. Journal of Materials Science, 2017, 52(9): 5462–5473

    Article  CAS  Google Scholar 

  29. Wang J H, Yang P, Mao W M. Analysis of {1 0 0} texture formation in vacuum annealed electrical steel based on elastic anisotropy and surface energy anisotropy. Steel Research International, 2019, 90(2): 1800320

    Article  Google Scholar 

  30. Yang P, Wang J H, Ma D D, et al. Influences of composition on the transformation-controlled {1 0 0} textures in high silicon electrical steels prepared by Mn-removal vacuum annealing. Acta Metallurgica Sinica, doi:https://doi.org/10.11900/0412.1961.2021.00086 (in Chinese)

  31. Liu T Y, Yang P, Meng L, et al. Influence of austenitic orientation on martensitic transformations in a compressed high manganese steel. Journal of Alloys and Compounds, 2011, 509(33): 8337–8344

    Article  CAS  Google Scholar 

  32. Yang P, Liu T Y, Lu F Y, et al. Orientation dependence of martensitic transformation in high Mn TRIP/TWIP steels. Steel Research International, 2012, 83(4): 368–373

    Article  CAS  Google Scholar 

  33. Wang L N, Yang P, Jin T, et al. Different mechanisms of ε-M and α′-M variant selection and the influencing factors of ε-M reversion during dynamic tension in TRIP steel. Acta Metallurgica Sinica: English Letters, 2018, 31(5): 449–455

    Google Scholar 

  34. Wang L N, Yang P, Mao W M. Analysis of martensitic transformation during tension of high manganese TRIP steel at high strain rates. Acta Metallurgica Sinica, 2016, 52(9): 1045–1052 (in Chinese)

    CAS  Google Scholar 

  35. Wang L N, Yang P, Li K, et al. Phase transformation and texture evolution during cold rolling and α′-M reversion in high manganese TRIP steel. Acta Metallurgica Sinica, 2018, 54(12): 1756–1766 (in Chinese)

    CAS  Google Scholar 

  36. Ma D D, Yang P, Gu X F, et al. In-situ neutron diffraction investigation on the martensite transformation, texture evolution and martensite reversion in high manganese TRIP steel. Materials Characterization, 2020, 163: 110244

    Article  CAS  Google Scholar 

  37. Ma DD, Yang P, Gu XF, et al. Influences of initial microstructures on martensitic transformation and textures during cold rolling and tensile mechanical properties in high manganese TRIP steel. Materials Science and Engineering A, 2022, 829: 142147

    Article  CAS  Google Scholar 

  38. Li K, Yang P. Interaction among deformation, recrystallization and phase transformation of pure titanium during hot compression. Transactions of Nonferrous Metals Society of China, 2016, 26(7): 1863–1870

    Article  CAS  Google Scholar 

  39. Li K, Yang P, Cui F E, et al. Texture control of pure titanium sheet by the surface effect during phase transformation. Metals, 2018, 8(5): 358

    Article  Google Scholar 

  40. Wei Z G, Yang P, Gu X F, et al. Transformation textures in pure titanium: texture memory vs surface effect. Materials Characterization, 2020, 164: 110359

    Article  CAS  Google Scholar 

  41. Yang P, Wei Z G, Gu X F, et al. Influences of cold rolling, recrystallization and surface effect on the transformation textures in a TA10 titanium alloy. Journal of Physics: Conference Series, 2019, 1270: 012037 (6 pages)

    CAS  Google Scholar 

  42. Li K, Yang P. Strain-induced α-to-β phase transformation during hot compression in Ti-5Al-5Mo-5V-1Cr-1Fe alloy. Transactions of Nonferrous Metals Society of China, 2019, 29(2): 296–304

    Article  Google Scholar 

  43. Souza Filho I R, Sandim M J R, Ponge D, et al. Strain hardening mechanisms during cold rolling of a high-Mn steel: interplay between submicron defects and microtexture. Materials Science and Engineering A, 2019, 754: 636–649

    Article  CAS  Google Scholar 

  44. Shen X J, Tang S, Chen J, et al. Grain refinement in surface layers through deformation-induced ferrite transformation in microalloyed steel plate. Materials & Design, 2017, 113: 137–141

    Article  CAS  Google Scholar 

  45. Milner J L, Abu-Farha F, Kurfess T, et al. Effects of induced shear deformation on microstructure and texture evolution in CP-Ti rolled sheets. Materials Science and Engineering A, 2014, 619: 12–25

    Article  CAS  Google Scholar 

  46. Nasiri-Abarbekoh H, Ekrami A, Ziaei-Moayyed A A. Impact of phase transformation on mechanical properties anisotropy of commercially pure titanium. Materials & Design, 2012, 37: 223–227

    Article  CAS  Google Scholar 

  47. Shinbine A, Garcin T, Sinclair C. In-situ laser ultrasonic measurement of the hcp to bcc transformation in commercially pure titanium. Materials Characterization, 2016, 117: 57–64

    Article  CAS  Google Scholar 

  48. Gomes E, Verbeken K, Gautam J, et al. Evolution of the microstructural surface characteristics during annealing. Materials Science and Engineering A, 2013, 561: 312–316

    Article  CAS  Google Scholar 

  49. Gautam J, Petrov R, Kestens L, et al. Surface energy controlled α—γ—α transformation texture and microstructure character study in ULC steels alloyed with Mn and Al. Journal of Materials Science, 2008, 43(11): 3969–3975

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51771024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Ma, D., Gu, X. et al. On the transformation textures influenced by deformation in electrical steels, high manganese steels and pure titanium sheets. Front. Mater. Sci. 16, 220582 (2022). https://doi.org/10.1007/s11706-022-0582-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-022-0582-z

Keywords

Navigation