Skip to main content
Log in

Interlayer-confined two-dimensional manganese oxide-carbon nanotube catalytic ozonation membrane for efficient water purification

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Catalytic ozonation technology has attracted copious attention in water purification owing to its favorable oxidative degradation of pollutants and mitigation of membrane fouling capacity. However, its extensive industrial application has been restricted by the low ozone utilization and limited mass transfer of the short-lived radical species. Interlayer space-confined catalysis has been theoretically proven to be a viable strategy for achieving high catalytic efficiency. Here, a two-dimensional MnO2-incorporated ceramic membrane with tunable interspacing, which was obtained via the intercalation of a carbon nanotube, was designed as a catalytic ozonation membrane reactor for degrading methylene blue. Benefiting from the abundant catalytic active sites on the surface of two-dimensional MnO2 as well as the ultralow mass transfer resistance of fluids due to the nanolayer confinement, an excellent mineralization effect, i.e., 1.2 mg O3(aq) mg−1 TOC removal (a total organic carbon removal rate of 71.5%), was achieved within a hydraulic retention time of 0.045 s of pollutant degradation. Further, the effects of hydraulic retention time and interlayer spacing on methylene blue removal were investigated. Moreover, the mechanism of the catalytic ozonation employing catalytic ozonation membrane was proposed based on the contribution of the Mn(III/IV) redox pair to electron transfer to generate the reactive oxygen species. This innovative two-dimensional confinement catalytic ozonation membrane could act as a nanoreactor and separator to efficiently oxidize organic pollutants and enhance the control of membrane fouling during water purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nguyen T A, Juang R. Treatment of waters and wastewaters containing sulfur dyes: a review. Chemical Engineering Journal, 2013, 219: 109–117

    Article  CAS  Google Scholar 

  2. Katheresan V, Kansedo J, Lau S Y. Efficiency of various recent wastewater dye removal methods: a review. Journal of Environmental Chemical Engineering, 2018, 6(4): 4676–4697

    Article  CAS  Google Scholar 

  3. Spagni A, Casu S, Grilli S. Decolourisation of textile wastewater in a submerged anaerobic membrane bioreactor. Bioresource Technology, 2012, 117: 180–185

    Article  CAS  PubMed  Google Scholar 

  4. García-Montaño J, Torrades F, García-Hortal J A, Domènech X, Peral J. Combining photo-Fenton process with aerobic sequencing batch reactor for commercial hetero-bireactive dye removal. Applied Catalysis B: Environmental, 2006, 67(1–2): 86–92

    Article  Google Scholar 

  5. Pazdźior K, Bilińska L, Ledakowicz S. A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chemical Engineering Journal, 2019, 376: 120597

    Article  Google Scholar 

  6. Nawrocki J, Kasprzyk-Hordern B. The efficiency and mechanisms of catalytic ozonation. Applied Catalysis B: Environmental, 2010, 99(1–2): 27–42

    Article  CAS  Google Scholar 

  7. Harman B I, Koseoglu H, Yigit N O, Beyhan M, Kitis M. The use of iron oxide-coated ceramic membranes in removing natural organic matter and phenol from waters. Desalination, 2010, 261(1–2): 27–33

    Article  CAS  Google Scholar 

  8. Byun S, Davies S H, Alpatova A L, Corneal L M, Baumann M J, Tarabara V V, Masten S J. Mn oxide coated catalytic membranes for a hybrid ozonation-membrane filtration: comparison of Ti, Fe and Mn oxide coated membranes for water quality. Water Research, 2011, 45(1): 163–170

    Article  CAS  PubMed  Google Scholar 

  9. Lee W J, Bao Y, Guan C, Hu X, Lim T. Ce/TiOx-functionalized catalytic ceramic membrane for hybrid catalytic ozonation-membrane filtration process: fabrication, characterization and performance evaluation. Chemical Engineering Journal, 2021, 410: 128307

    Article  CAS  Google Scholar 

  10. Wang J, Wu Z, Li T, Ye J, Shen L, She Z, Liu F. Catalytic PVDF membrane for continuous reduction and separation of p-nitrophenol and methylene blue in emulsified oil solution. Chemical Engineering Journal, 2018, 334: 579–586

    Article  CAS  Google Scholar 

  11. Ma J, Graham N J D. Degradation of atrazine by manganese-catalysed ozonation: influence of humic substances. Water research (Oxford), 1999, 33(3): 785–793

    Article  CAS  Google Scholar 

  12. Sun Q, Wang Y, Li L, Bing J, Wang Y, Yan H. Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnO/SBA-15. Journal of Hazardous Materials, 2015, 286: 276–284

    Article  CAS  PubMed  Google Scholar 

  13. Zhao Y, Chang C, Teng F, Zhao Y, Chen G, Shi R, Waterhouse G I N, Huang W, Zhang T. Defect-engineered ultrathin δ-MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting. Advanced Energy Materials, 2017, 7(18): 1700005

    Article  Google Scholar 

  14. Rong S, Zhang P, Wang J, Liu F, Yang Y, Yang G, Liu S. Ultrathin manganese dioxide nanosheets for formaldehyde removal and regeneration performance. Chemical Engineering Journal, 2016, 306:1172–1179

    Article  CAS  Google Scholar 

  15. Liu J, Wei Y, Li P, Zhang P, Su W, Sun Y, Zou R, Zhao Y. Experimental and theoretical investigation of mesoporous MnO2 nanosheets with oxygen vacancies for high-efficiency catalytic DeNOx. ACS Catalysis, 2018, 8(5): 3865–3874

    Article  CAS  Google Scholar 

  16. Zhu L, Chen M, Dong Y, Tang C Y, Huang A, Li L. A low-cost mullite-titania composite ceramic hollow fiber microfiltration membrane for highly efficient separation of oil-in-water emulsion. Water Research, 2016, 90: 277–285

    Article  CAS  PubMed  Google Scholar 

  17. Liu Z, Xu K, Sun H, Yin S. One-step synthesis of single-layer MnO2 nanosheets with multi-role sodium dodecyl sulfate for highperformance pseudocapacitors. Small, 2015, 11(18): 2182–2191

    Article  CAS  PubMed  Google Scholar 

  18. Tan X, Wan Y, Huang Y, He C, Zhang Z, He Z, Hu L, Zeng J, Shu D. Three-dimensional MnO2 porous hollow microspheres for enhanced activity as ozonation catalysts in degradation of bisphenol A. Journal of Hazardous Materials, 2017, 321: 162–172

    Article  CAS  PubMed  Google Scholar 

  19. Cui L, Huang H, Ding P, Zhu S, Jing W, Gu X. Cogeneration of H2O2 and •OH via a novel Fe3O4/MWCNTs composite cathode in a dual-compartment electro-Fenton membrane reactor. Separation and Purification Technology, 2020, 237: 116380

    Article  CAS  Google Scholar 

  20. Lee W J, Bao Y, Hu X, Lim T. Hybrid catalytic ozonation-membrane filtration process with CeOx and MnOx impregnated catalytic ceramic membranes for micropollutants degradation. Chemical Engineering Journal, 2019, 378: 121670

    Article  CAS  Google Scholar 

  21. Chiou C, Mariñas B J, Adams J Q. Modified indigo method for gaseous and aqueous ozone analyses. Ozone Science and Engineering, 1995, 17(3): 329–344

    Article  CAS  Google Scholar 

  22. Kai K, Yoshida Y, Kageyama H, Saito G, Ishigaki T, Furukawa Y, Kawamata J. Room-temperature synthesis of manganese oxide monosheets. Journal of the American Chemical Society, 2008, 130(47): 15938–15943

    Article  CAS  PubMed  Google Scholar 

  23. Wang X, Li Y. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chemistry (Weinheim an der Bergstrasse, Germany), 2003, 9(1): 300–306

    Google Scholar 

  24. Devaraj S, Munichandraiah N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. Journal of Physical Chemistry C, 2008, 112(11): 4406–4417

    Article  CAS  Google Scholar 

  25. Rong S, Zhang P, Liu F, Yang Y. Engineering crystal facet of α-MnO2 nanowire for highly efficient catalytic oxidation of carcinogenic airborne formaldehyde. ACS Catalysis, 2018, 8(4): 3435–3446

    Article  CAS  Google Scholar 

  26. Sinha A K, Pradhan M, Pal T. Morphological evolution of two-dimensional MnO2 nanosheets and their shape transformation to one-dimensional ultralong MnO2 nanowires for robust catalytic activity. Journal of Physical Chemistry C, 2013, 117(45): 23976–23986

    Article  CAS  Google Scholar 

  27. Yang D S, Wang M K. Syntheses and characterization of well-crystallized birnessite. Chemistry of Materials, 2001, 13(8): 2589–2594

    Article  CAS  Google Scholar 

  28. Xu J, Li Y, Qian M, Pan J, Ding J, Guan B. Amino-functionalized synthesis of MnO2-NH2-GO for catalytic ozonation of cephalexin. Applied Catalysis B: Environmental, 2019, 256: 117797

    Article  CAS  Google Scholar 

  29. Nawaz F, Cao H, Xie Y, Xiao J, Chen Y, Ghazi Z A. Selection of active phase of MnO2 for catalytic ozonation of 4-nitrophenol. Chemosphere, 2017, 168: 1457–1466

    Article  CAS  PubMed  Google Scholar 

  30. Zhao H, Dong Y, Jiang P, Wang G, Zhang J, Li K, Feng C. An α-MnO2 nanotube used as a novel catalyst in ozonation: performance and the mechanism. New Journal of Chemistry, 2014, 38(4): 1175–1743

    Article  CAS  Google Scholar 

  31. Li G, Lu Y, Lu C, Zhu M, Zhai C, Du Y, Yang P. Efficient catalytic ozonation of bisphenol-A over reduced graphene oxide modified sea urchin-like a-MnO2 architectures. Journal of Hazardous Materials, 2015, 294: 201–208

    Article  CAS  PubMed  Google Scholar 

  32. Qi F, Chen Z, Xu B, Shen J, Ma J, Joll C, Heitz A. Influence of surface texture and acid-base properties on ozone decomposition catalyzed by aluminum (hydroxyl) oxides. Applied Catalysis B: Environmental, 2008, 84(3–4): 684–690

    Article  CAS  Google Scholar 

  33. Sui M, Liu J, Sheng L. Mesoporous material supported manganese oxides (MnOx/MCM-41) catalytic ozonation of nitrobenzene in water. Applied Catalysis B: Environmental, 2011, 106: 197–203

    Google Scholar 

  34. Turan-Ertas T, Gurol M D. Oxidation of diethylene glycol with ozone and modified Fenton processes. Chemosphere, 2002, 47(3): 293–301

    Article  CAS  PubMed  Google Scholar 

  35. Zhang S, Quan X, Zheng J, Wang D. Probing the interphase “HO •zone” originated by carbon nanotube during catalytic ozonation. Water Research, 2017, 122: 86–95

    Article  PubMed  Google Scholar 

  36. Wang Y, Chen L, Chen C, Xi J, Cao H, Duan X, Xie Y, Song W, Wang S. Occurrence ofboth hydroxyl radical and surface oxidation pathways in N-doped layered nanocarbons for aqueous catalytic ozonation. Applied Catalysis B: Environmental, 2019, 254: 283–291

    Article  CAS  Google Scholar 

  37. Zhang J, Wu Y, Qin C, Liu L, Lan Y. Rapid degradation of aniline in aqueous solution by ozone in the presence of zero-valent zinc. Chemosphere, 2015, 141: 258–264

    Article  CAS  PubMed  Google Scholar 

  38. Huang K, Liu G, Lou Y, Dong Z, Shen J, Jin W. A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angewandte Chemie International Edition, 2014, 53(27): 6929–6932

    Article  CAS  PubMed  Google Scholar 

  39. Rana M, Sai Avvaru V, Boaretto N, de la Peña O’Shea V A, Marcilla R, Etacheri V, Vilatela J J. High rate hybrid MnO2@CNT fabric anodes for Li-ion batteries: properties and a lithium storage mechanism study by in situ synchrotron X-ray scattering. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(46): 26596–26606

    Article  CAS  Google Scholar 

  40. Lu K, Hu Z, Xiang Z, Ma J, Song B, Zhang J, Ma H. Cation intercalation in manganese oxide nanosheets: effects on lithium and sodium storage. Angewandte Chemie International Edition, 2016, 55(35): 10448–10452

    Article  CAS  PubMed  Google Scholar 

  41. Byun S, Cho S H, Yoon J, Geissen S U, Vogelpohl A, Kim S M. Influence of mass transfer on the ozonation of wastewater from the glass fiber industry. Water Science and Technology, 2004, 49(4): 31–36

    Article  CAS  PubMed  Google Scholar 

  42. Saroj D P, Kumar A, Bose P, Tare V, Dhopavkar Y. Mineralization of some natural refractory organic compounds by biodegradation and ozonation. Water Research, 2005, 39(9): 1921–1933

    Article  CAS  PubMed  Google Scholar 

  43. Rosal R, Rodríguez A, Perdigón-Melón J A, Mezcua M, Hernando M D, Letón P, García-Calvo E, Agüera A, Fernández-Alba A R. Removal of pharmaceuticals and kinetics of mineralization by O3/H2O2 in a biotreated municipal wastewater. Water Research, 2008, 42(14): 3719–3728

    Article  CAS  PubMed  Google Scholar 

  44. Chen Y, Zhang G, Liu H, Qu J. Confining free radicals in close vicinity to contaminants enables ultrafast Fenton-like processes in the interspacing of MoS2 membranes. Angewandte Chemie International Edition, 2019, 58(24): 8134–8138

    Article  CAS  PubMed  Google Scholar 

  45. Biswas S, Pal A. Visible light assisted Fenton type degradation of methylene blue by admicelle anchored alumina supported rod shaped manganese oxide. Journal of Water Process Engineering, 2020, 36: 101272

    Article  Google Scholar 

  46. Xu A, Li X, Xiong H, Yin G. Efficient degradation of organic pollutants in aqueous solution with bicarbonate-activated hydrogen peroxide. Chemosphere, 2011, 82(8): 1190–1195

    Article  CAS  PubMed  Google Scholar 

  47. Luo X, Liang H, Qu F, Ding A, Cheng X, Tang C Y, Li G. Freestanding hierarchical α-MnO2@CuO membrane for catalytic filtration degradation of organic pollutants. Chemosphere, 2018, 200: 237–247

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 21838005 and 21676139) and the Key Scientific Research and Development Projects of Jiangsu Province (Grant No. BE201800901). The authors would like to thank Shiyanjia Laboratory for the language editing service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenheng Jing.

Electronic supplementary material

11705_2021_2110_MOESM1_ESM.pdf

Interlayer-confined two-dimensional manganese oxide-carbon nanotube catalytic ozonation membrane for efficient water purification

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Ding, T., Sun, Y. et al. Interlayer-confined two-dimensional manganese oxide-carbon nanotube catalytic ozonation membrane for efficient water purification. Front. Chem. Sci. Eng. 16, 731–744 (2022). https://doi.org/10.1007/s11705-021-2110-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2110-6

Keywords

Navigation