Skip to main content

Advertisement

Log in

The 100 most influential manuscripts in robotic surgery: a bibliometric analysis

  • Original Article
  • Published:
Journal of Robotic Surgery Aims and scope Submit manuscript

Abstract

Since the first robotic assisted surgery in 1985, the number of procedures performed annually has steadily increased. Bibliometric analysis highlights the key studies that have influenced current practice in a field of interest. We use bibliometric analysis to evaluate the 100 most cited manuscripts on robotic surgery and discuss their content and influence on the evolution of the platform. The terms ‘robotic surgery,’ ‘robot assisted surgery’ and ‘robot-assisted surgery’ were used to search Thomson Reuters Web of Science database for full length, English language manuscripts. The top 100 cited manuscripts were analyzed by manuscript type, surgical specialty, first and last author, institution, year and journal of publication. 14,980 manuscripts were returned. Within the top 100 cited manuscripts, the majority featured urological surgery (n = 28), followed by combined results from multiple surgical subspecialties (n = 15) and colorectal surgery (n = 13). The majority of manuscripts featured case series/reports (n = 42), followed by comparative studies (n = 24). The most cited paper authored by Nelson et al. (432 citations) reviewed technological advances in the field. The year and country with the greatest number of publications were 2009 (n = 15) and the USA (n = 68). The Johns Hopkins University published the most top 100 manuscripts (n = 18). The 100 most cited manuscripts reflect the progression of robotic surgery from a basic instrument-holding platform to today’s articulated instruments with 3D technology. From feasibility studies to multicenter trials, this analysis demonstrates how robotic assisted surgery has gained acceptance in urological, colorectal, general, cardiothoracic, orthopedic, maxillofacial and neuro surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alemzadeh H, Raman J, Leveson N, Kalbarczyk Z, Iyer RK (2016) Adverse events in robotic surgery: a retrospective study of 14 years of FDA data. PLoS One 11:e0151470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Pugin F, Bucher P, Morel P (2011) History of robotic surgery: from AESOP(R) and ZEUS(R) to da Vinci(R). J Visc Surg 148:e3–e8

    Article  CAS  PubMed  Google Scholar 

  3. Lanfranco AR, Castellanos AE, Desai JP, Meyers WC (2004) Robotic surgery: a current perspective. Ann Surg 239:14–21

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ballantyne GH (2002) Robotic surgery, telerobotic surgery, telepresence, and telementoring—review of early clinical results. Surg Endosc Other Interv Tech 16:1389–1402

    Article  CAS  Google Scholar 

  5. Loonen MP, Hage JJ, Kon M (2008) Plastic surgery classics: characteristics of 50 top-cited articles in four plastic surgery journals since 1946. Plast Reconstr Surg 121:320e–327e

    Article  PubMed  CAS  Google Scholar 

  6. Dubin D, Hafner AW, Arndt KA (1993) Citation classics in clinical dermatologic journals. Citation analysis, biomedical journals, and landmark articles, 1945–1990. Arch Dermatol 129:1121–1129

    Article  CAS  PubMed  Google Scholar 

  7. Paladugu R, Schein M, Gardezi S, Wise L (2002) One hundred citation classics in general surgical journals. World J Surg 26:1099–1105

    Article  PubMed  Google Scholar 

  8. Kelly JC, Glynn RW, O’Briain DE, Felle P, McCabe JP (2010) The 100 classic papers of orthopaedic surgery: a bibliometric analysis. J Bone Joint Surg Br 92:1338–1343

    Article  CAS  PubMed  Google Scholar 

  9. Joyce CW, Kelly JC, Sugrue C (2014) A bibliometric analysis of the 100 most influential papers in burns. Burns 40:30–37

    Article  CAS  PubMed  Google Scholar 

  10. Kavanagh RG, Kelly JC, Kelly PM, Moore DP (2013) The 100 classic papers of pediatric orthopaedic surgery: a bibliometric analysis. J Bone Joint Surg 95:e134 (American volume)

    Article  CAS  PubMed  Google Scholar 

  11. Taylor RH, Stoianovici D (2003) Medical robotics in computer-integrated surgery. IEEE Trans Robot Autom 19:765–781

    Article  Google Scholar 

  12. Drake JM, Joy M, Goldenberg A, Kreindler D (1991) Computer- and robot-assisted resection of thalamic astrocytomas in children. Neurosurgery 29:27–33

    Article  CAS  PubMed  Google Scholar 

  13. Wakabayashi G, Cherqui D, Geller DA et al (2015) Recommendations for laparoscopic liver resection: a report from the second international consensus conference held in Morioka. Ann Surg 261:619–629

    PubMed  Google Scholar 

  14. Taylor RH, Paul HA, Hanson W et al (1994) An image-directed robotic system for precise orthopaedic surgery. IEEE Trans Robot Autom 10:261–275

    Article  Google Scholar 

  15. Sung GT, Gill IS (2001) Robotic laparoscopic surgery: a comparison of the DA Vinci and Zeus systems. Urology 58:893–898

    Article  CAS  PubMed  Google Scholar 

  16. Montorsi F, Wilson TG, Rosen RC et al (2012) Best practices in robot-assisted radical prostatectomy: recommendations of the Pasadena Consensus Panel. Eur Urol 62:368–381

    Article  PubMed  Google Scholar 

  17. Aboumarzouk OM, Stein RJ, Eyraud R et al (2012) Robotic versus laparoscopic partial nephrectomy: a systematic review and meta-analysis. Eur Urol 62:1023–1033

    Article  PubMed  Google Scholar 

  18. Tewari A, Sooriakumaran P, Bloch DA (2012) Positive surgical margin and perioperative complication rates of primary surgical treatments for prostate cancer: a systematic review and meta-analysis comparing retropubic, laparoscopic, and robotic prostatectomy. Eur Urol 62:1–15

    Article  PubMed  Google Scholar 

  19. Nifong LW, Chitwood WR, Pappas PS et al (2005) Robotic mitral valve surgery: a United States multicenter trial. J Thorac Cardiovasc Surg 129:1395–1404

    Article  PubMed  Google Scholar 

  20. Pigazzi A, Luca F, Patriti A et al (2010) Multicentric study on robotic tumor-specific mesorectal excision for the treatment of rectal cancer. Ann Surg Oncol 17:1614–1620

    Article  PubMed  Google Scholar 

  21. Collinson FJ, Jayne DG, Pigazzi A et al (2012) An international, multicentre, prospective, randomised, controlled, unblinded, parallel-group trial of robotic-assisted versus standard laparoscopic surgery for the curative treatment of rectal cancer. Int J Colorectal Dis 27:233–241

    Article  PubMed  Google Scholar 

  22. Weinstein GS, O’Malley BW Jr, Magnuson JS et al (2012) Transoral robotic surgery: a multicenter study to assess feasibility, safety, and surgical margins. Laryngoscope 122:1701–1707

    Article  PubMed  Google Scholar 

  23. Kavoussi LR, Moore RG, Adams JB et al (1995) Comparison of robotic versus human laparoscopic camera control. J Urol 154:2134–2136

    Article  CAS  PubMed  Google Scholar 

  24. Lenihan J, Kovanda C, Seshadri-Kreaden U (2008) What is the learning curve for robotic assisted gynecologic surgery? J Minim Invasive Gynecol 15:589–594

    Article  PubMed  Google Scholar 

  25. Bokhari MB, Patel CB, Ramos-Valadez DI et al (2011) Learning curve for roboticassisted laparoscopic colorectal surgery. Surg Endosc 25:855–860

    Article  PubMed  Google Scholar 

  26. Seglen PO (1997) Citations and journal impact factors: questionable indicators of research quality. Allergy 52:1050–1056

    Article  CAS  PubMed  Google Scholar 

  27. Giulianotti PC, Coratti A, Angelini M et al (2003) Robotics in general surgery: personal experience in a large community hospital. Arch Surg 138:777–784

    Article  PubMed  Google Scholar 

  28. Tewari A, Srivasatava A, Menon M et al (2003) A prospective comparison of radical retropubic and robot-assisted prostatectomy: experience in one institution. BJU Int 92:205–210

    Article  CAS  PubMed  Google Scholar 

  29. Menon M, Shrivastava A, Sarle R et al (2003) Vattikuti Institute Prostatectomy: a single-team experience of 100 cases. J Endourol 17:785–790

    Article  PubMed  Google Scholar 

  30. O’Malley BW, Weinstein GS, Snyder W et al (2006) Transoral robotic surgery (TORS) for base of tongue neoplasms. Laryngoscope 116:1465–1472

    Article  PubMed  Google Scholar 

  31. Benway BM, Bhayani SB, Rogers CG et al (2009) Robot assisted partial nephrectomy versus laparoscopic partial nephrectomy for renal tumors: a multi-institutional analysis of perioperative outcomes. J Urol 182:866–872

    Article  PubMed  Google Scholar 

  32. Menon M, Hemal AK, Tewari A et al (2003) Nerve-sparing robot-assisted radical cystoprostatectomy and urinary diversion. BJU Int 92:232–236

    Article  CAS  PubMed  Google Scholar 

  33. Weinstein GS, O’Malley BW, Snyder W et al (2007) Transoral robotic surgery: radical tonsillectomy. Arch Otolaryngol Head Neck Surg 133:1220–1226

    Article  PubMed  Google Scholar 

  34. DiGioia AM, Jaramaz B, Colgan BD (1998) Computer assisted orthopaedic surgery—image guided and robotic assistive technologies. Clin Orthop Relat Res 354:8–16

    Article  Google Scholar 

  35. Badani KK, Kaul S, Menon M (2007) Evolution of robotic radical prostatectomy: assessment after 2766 procedures. Cancer 110:1951–1958

    Article  PubMed  Google Scholar 

  36. Ficarra V, Cavalleri S, Novara G et al (2007) Evidence from robot-assisted laparoscopic radical prostatectomy: a systematic review. Eur Urol 51:45–55

    Article  PubMed  Google Scholar 

  37. Cadière GB, Himpens J, Germay O et al (2001) Feasibility of robotic laparoscopic surgery: 146 cases. World J Surg 25:1467–1477

    Article  PubMed  Google Scholar 

  38. Nix J, Smith A, Kurpad R et al (2010) Prospective randomized controlled trial of robotic versus open radical cystectomy for bladder cancer: perioperative and pathologic results. Eur Urol 57:196–201

    Article  PubMed  Google Scholar 

  39. Loulmet D, Carpentier A, d’Attellis N et al (1999) Endoscopic coronary artery bypass grafting with the aid of robotic assisted instruments. J Thorac Cardiovasc Surg 118:4–10

    Article  CAS  PubMed  Google Scholar 

  40. Gettman MT, Blute ML, Chow GK et al (2004) Robotic-assisted laparoscopic partial nephrectomy: technique and initial clinical experience with DaVinci robotic system. Urology 64:914–918

    Article  PubMed  Google Scholar 

  41. Taylor R, Jensen P, Whitcomb L et al (1999) A steady-hand robotic system for microsurgical augmentation. Int J Robot Res 18:1201–1210

    Article  Google Scholar 

  42. Baik SH, Kwon HY, Kim JS et al (2009) Robotic versus laparoscopic low anterior resection of rectal cancer: short-term outcome of a prospective comparative study. Ann Surg Oncol 16:1480–1487

    Article  PubMed  Google Scholar 

  43. Mohr FW, Falk V, Diegeler A et al (2001) Computer-enhanced ‘robotic’ cardiac cardiac surgery: experience in 148 patients. J Thorac Cardiovasc Surg 121:842–853

    Article  CAS  PubMed  Google Scholar 

  44. Wright JD, Ananth CV, Lewin SN et al (2013) Robotically assisted vs laparoscopic hysterectomy among women with benign gynecologicdisease. JAMA 309:689–698

    Article  CAS  PubMed  Google Scholar 

  45. Kang SW, Lee SC, Lee SH et al (2009) Robotic thyroid surgery using a gasless, transaxillary approach and the da Vinci S system: the operative outcomes of 338 consecutive patients. Surgery 146:1048–1055

    Article  PubMed  Google Scholar 

  46. Sackier JM and WangY (1994) Robotically assisted laparoscopic surgery. From concept to development. Surg Endosc. 1994 Jan;8(1):63-6

    Article  CAS  PubMed  Google Scholar 

  47. Mack MJ (2001) Minimally invasive and robotic surgery. JAMA 285:568–572

    Article  CAS  PubMed  Google Scholar 

  48. D’Annibale A, Morpurgo E, Fiscon V et al (2004) Robotic and laparoscopic surgery for treatment of colorectal diseases. Dis Colon Rectum 47:2162–2168

    Article  PubMed  Google Scholar 

  49. Magrina JF, Kho RM, Weaver AL et al (2008) Robotic radical hysteretomy: comparison with laparoscopy and laparotomy. Gynecol Oncol 109:86–91

    Article  PubMed  Google Scholar 

  50. Nguyen PL, Gu X, Lipsitz SR et al (2011) Cost implications of the rapid adoption of newer technologies for treating prostate cancer. J Clin Oncol 29:1517–1524

    Article  PubMed  PubMed Central  Google Scholar 

  51. Weinstein GS, O’Malley BW Jr, Snyder W et al (2007) Transoral robotic surgery: supraglottic partial laryngectomy. Ann Otol Rhinol Laryngol 116:19–23

    Article  PubMed  Google Scholar 

  52. Abbou CC, Hoznek A, Salomon L et al (2001) Laparoscopic radical prostatectomy prostatectomy with a remote controlled robot. J Urol 165:1964–1966

    Article  CAS  PubMed  Google Scholar 

  53. Lee RS, Retik AB, Borer JG et al (2006) Pediatric robot assisted laparoscopic dismembered pyeloplasty: comparison with a cohort of open surgery. J Urol 175:683–687

    Article  PubMed  Google Scholar 

  54. Weber PA, Merola S, Wasielewski A et al (2002) Telerobotic-assisted laparoscopic right and sigmoid colectomies for benign disease. Dis Colon Rectum 45:1689–1694

    Article  PubMed  Google Scholar 

  55. Giulianotti PC, Sbrana F, Bianco FM et al (2010) Robot-assisted laparoscopic pancreatic surgery: single-surgeon experience. Surg Endosc 24:1646–1657

    Article  PubMed  Google Scholar 

  56. Benway BM, Wang AJ, Cabello JM et al (2009) Robotic partial nephrectomy with sliding-clip renorrhaphy: technique and outcomes. Eur Urol 55:592–599

    Article  PubMed  Google Scholar 

  57. Okamura AM (2004) Methods for haptic feedback in teleoperated robot-assisted surgery. Ind Robot 31:499–508

    Article  CAS  Google Scholar 

  58. Delaney CP, Lynch AC, Senagore AJ et al (2003) Comparison of robotically performed and traditional laparoscopic colorectal surgery. Dis Colon Rectum 46:1633–1639

    Article  PubMed  Google Scholar 

  59. Paraiso MF, Jelovsek JE, Frick A et al (2011) Laparoscopic compared with robotic sacrocolpopexy for vaginal prolapse: a randomized controlled trial. Obstet Gynecol 118:1005–1013

    Article  PubMed  Google Scholar 

  60. Kang SW, Jeong JJ, Yun JS et al (2009) Robot-assisted endoscopic surgery for thyroid cancer: experience with the first 100 patients. Surg Endosc 2:2399–2406

    Article  Google Scholar 

  61. Kaouk JH, Goel RK, Haber GP et al (2009) Robotic single-port transumbilical surgery in humans: initial report. BJU Int 103:366–369

    Article  PubMed  Google Scholar 

  62. Okamura AM (2009) Haptic feedback in robot-assisted minimally invasive surgery. Curr Opin Urol 19:102–107

    Article  PubMed  PubMed Central  Google Scholar 

  63. Talamini MA, Chapman S, Horgan S et al (2003) A prospective analysis of 211 robotic-assisted surgical procedures. Surg Endosc 17:1521–1524

    Article  CAS  PubMed  Google Scholar 

  64. Pigazzi A, Ellenhorn JD, Ballantyne GH et al (2006) Robotic-assisted laparoscopic low anterior resection with total mesorectal excision for rectal cancer. Surg Endosc 20:1521–1525

    Article  CAS  PubMed  Google Scholar 

  65. Moore EJ, Olsen KD, Kasperbauer JL (2009) Transoral robotic surgery for oropharyngeal squamous cell carcinoma: a prospective study of feasiblity and functional outcomes. Laryngoscope 119:2156–2164

    Article  PubMed  Google Scholar 

  66. Falk V, Diegeler A, Walther T et al (2000) Total endoscopic computer enhanced coronary artery bypass grafting. Eur J Cardiothorac Surg 17:38–45

    Article  CAS  PubMed  Google Scholar 

  67. Krambeck AE, DiMarco DS, Rangel LJ et al (2009) Radical prostectomy for prostatic adenocarcinoma: a matched comparison of open retropubicand robotassisted techniques. BJU Int 103:448–453

    Article  PubMed  Google Scholar 

  68. Song J, Oh SJ, Kang WH et al (2009) Robot- assisted gastrectomy with lymph node dissection for gastric cancer: lessons learned from an intial 100 consecutive procedures. Ann Surg 249:927–932

    Article  PubMed  Google Scholar 

  69. Maeso S, Reza M, Mayol JA et al (2010) Efficacy of the Da Vinci surgical system in abdominal surgery compared with that of laparoscopy: a systematic review and meta-analysis. Ann Surg 252:254–262

    Article  PubMed  Google Scholar 

  70. Gill IS, Eisenberg MS, Aron M et al (2011) “Zero ischemia” partial nephrectomy: novel laparoscopic and robotic technique. Eur Urol 59:128–134

    Article  PubMed  Google Scholar 

  71. Peirs J, Clijnen J, Reynaerts D et al (2004) A micro optical force sensor for force feedback during minimally invasive robotic surgery. Sens Actuators A 115:447–455

    Article  CAS  Google Scholar 

  72. Seamon LG, Cohn DE, Henretta MS et al (2009) Miniamally invasive comprehensive surgical staging for endometrial cancer: robotics or laparoscopy? Gynecol Oncol 113:36–41

    Article  PubMed  Google Scholar 

  73. Tholey G, Desai JP, Castellanos AE (2005) Force feedback plays a significant role in minimally invasive surgery: results and analysis. Ann Surg 241:102–109

    Article  PubMed  PubMed Central  Google Scholar 

  74. Geller EJ, Siddiqui NY, Wu JM et al (2008) Short-term outcomes of robotic sacrocolpopexy compared with abdominal sacrocolpopexy. Obstet Gynecol 112:1201–1206

    Article  PubMed  Google Scholar 

  75. Horgan S, Vanuno D (2001) Robots in laparoscopic surgery. J Laparoendosc Adv Surg Tech A. 11:415–419

    Article  CAS  PubMed  Google Scholar 

  76. Bodner J, Wykypiel H, Wetscher G et al (2004) First experiences with the da Vinci operating robot in thoracic surgery. Eur J Cardiothorac Surg 25:844–851

    Article  CAS  PubMed  Google Scholar 

  77. Gehrig PA, Cantrell LA, Shafer A et al (2008) What is the optimal minimally invasive surgical procedure for endometrial cancer staging in the obese and morbidly obsese woman? Gynecol Oncol 111:41–45

    Article  PubMed  Google Scholar 

  78. Baik SH, Ko YT, Kang CM et al (2008) Robotic tumor-specific mesorectal excision of rectal cancer: short-term outcome of a pilotrandomized trial. Surg Endosc 22:1601–1608

    Article  CAS  PubMed  Google Scholar 

  79. Wang AJ, Bhayani SB (2009) Robotic partial nephretomy versus laparoscopic partial nephrectomy for renal cell carcinoma: single-surgeon analysis of > 100 consecutive procedures. Urology 73:306–310

    Article  PubMed  Google Scholar 

  80. Hassfeld S, Mühling J (2001) Computer assisted oral and maxillofacial surgery-a review and assessment of technology. Int J Oral Maxillofac Surg 30(1):2–13

    Article  CAS  PubMed  Google Scholar 

  81. Rogers CG, Singh A, Blatt AM et al (2008) Robotic partial nephrectomy for complex renal tumors: surgical technique. Eur Urol 53:514–521

    Article  PubMed  Google Scholar 

  82. Genden EM, Desai S, Sung CK (2009) Transoral robotic surgery for the management of head and neck cancer: a preliminaryexperience. Head Neck 31:283–289

    Article  PubMed  Google Scholar 

  83. Zorn KC, Gofrit ON, Orvieto MA et al (2007) Robotic-assisted laparoscopic prostatectomy: functional and pathologic outcomes with interfascial nerve preservation. Eur Urol 51:755–762

    Article  PubMed  Google Scholar 

  84. Rassweiler J, Hruza M, Teber D et al (2006) Laparoscopic and robotic assisted radical prostatectomy –critical analysis of the results. Eur Urol 49:612–624

    Article  PubMed  Google Scholar 

  85. Hanly EJ, Talamini MA (2004) Robotic abdominal surgery. Am J Surg 188:19S26S

    Article  Google Scholar 

  86. Davies B (2000) A review of robotics in surgery. Proc Inst Mech Eng H 214:129–140

    Article  CAS  PubMed  Google Scholar 

  87. Mottrie A, De Naeyer G, Schatteman P et al (2010) Impact of the learning curve on perioperative outcomes in patients who underwent roboticpartial nephrectomy for parenchymal renal tumours. Eur Urol 58:127–132

    Article  PubMed  Google Scholar 

  88. Yu HY, Hevelone ND, Lipsitz SR et al (2012) Use, costs and comparative effectiveness of robotic assisted, laparoscopic and open urological surgery. J Urol 187:1392–1398

    Article  PubMed  Google Scholar 

  89. Menon M, Kaul S, Bhandari A et al (2005) Potency following robotic radical prostatectomy: a questionnaire based analysis of outcomes after conventional nerve sparing and prostatic fascia sparing techniques. J Urol 174:2291–2296

    Article  PubMed  Google Scholar 

  90. Kitagawa M, Dokko D, Okamura AM et al (2005) Effect of sensory substitution on suture-manipulation forces for robotic surgical systems. J Thorac Cardiovasc Surg 129:151–158

    Article  PubMed  Google Scholar 

  91. Howe RD, Matsuoka Y (1999) Robotics for surgery. Annu Rev Biomed Eng 1:211–240

    Article  CAS  PubMed  Google Scholar 

  92. Simaan N, Xu K, Kapoor A et al (2009) Design and integration of a telerobotic telerobotic system for minimally invasive surgery of the throat. Int J Rob Res 1:1134–1153

    Article  Google Scholar 

  93. Ballantyne GH, Moll F (2003) The da Vinci telerobotic surgical system: the virtual operative field and telepresence surgery. Surg Clin North Am 83:1293–1304

    Article  PubMed  Google Scholar 

  94. van der Meijden OA, Schijven MP (2009) The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review. Surg Endosc 23:1180–1190

    Article  PubMed  PubMed Central  Google Scholar 

  95. Weinstein GS, O’Malley BW Jr, Cohen MA et al (2010) Transoral robotic surgery for advanced oropharyngeal carcinoma. Arch Otolaryngol Head Neck Surg 136:1079–1085

    Article  PubMed  Google Scholar 

  96. Hellan M, Anderson C, Ellenhorn JD et al (2007) Short-term outcomes after roboticassisted total mesorectal excision for rectal cancer. Ann Surg Oncol 14:3168–3173

    Article  PubMed  Google Scholar 

  97. Kim JY, Kim NK, Lee KY et al (2012) A comparative study of voiding and sexual function after total mesorectal excision with autonomic nerve preservation for rectal cancer: laparoscopic versus robotic surgery. Ann Surg Oncol 19:2485–2493

    Article  PubMed  Google Scholar 

  98. Atug F, Castle EP, Srivastav SK et al (2006) Positive surgical margins in roboticassisted radical prostatectomy: impact of learning curve on oncologic outcomes. Eur Urol 49:866–871

    Article  PubMed  Google Scholar 

  99. Camarillo DB, Krummel TM, Salisbury JK Jr (2004) Robotic technology in surgery: past, present, and future. Am J Surg 188:2S–15S

    Article  PubMed  Google Scholar 

  100. Shoham M, Burman M, Zehavi E et al (2003) Bone-mounted miniature robot for surgical procedures: concept and clinical applications. IEEE Trans Robot Autom 19:893–901

    Article  Google Scholar 

  101. Corcione F, Esposito C, Cuccurullo D et al (2005) Advantages and limits of robotassisted laparoscopic surgery: preliminary experience. Surg Endosc 19:117–119

    Article  CAS  PubMed  Google Scholar 

  102. Scales CD Jr, Jones PJ, Eisenstein EL et al (2005) Local cost structures and the economics of robot assisted radical prostatectomy. J Urol 174(6):2323–2329

    Article  PubMed  Google Scholar 

  103. Spinoglio G, Summa M, Priora F et al (2008) Robotic colorectal surgery: first 50 cases experience. Dis Colon Rectum 51:1627–32104

    Article  PubMed  Google Scholar 

  104. Moorthy K, Munz Y, Dosis A et al (2004) Dexterity enhancement with robotic surgery. Surg Endosc 18:790–795

    CAS  PubMed  Google Scholar 

  105. Pasticier G, Rietbergen JB, Guillonneau B et al (2001) Robotically assisted laparoscopic radical prostatectomy: feasibility study in men. Eur Urol 40:70–74

    Article  CAS  PubMed  Google Scholar 

  106. Nelson B, Kaufman M, Broughton G et al (2007) Comparison of length of hospital stay between radical retropubic prostatectomy and robotic assisted laparoscopic prostatectomy. J Urol 177:929–931

    Article  PubMed  Google Scholar 

  107. Daouadi M, Zureikat AH, Zenati MS et al (2013) Robot-assisted minimally invasive distal pancreatectomy is superior to the laparoscopic technique. Ann Surg 257:128–132

    Article  PubMed  Google Scholar 

  108. Aron M, Koenig P, Kaouk JH et al (2008) Robotic and laparoscopic partial nephrectomy: a matched-pair comparison from a high-volume centre. BJU Int 102:86–92

    Article  PubMed  Google Scholar 

  109. Kaul S, Laungani R, Sarle R et al (2007) da Vinci-assisted robotic partial nephrectomy: technique and results at a mean of 15 months of follow-up. Eur Urol 51:186–191

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was used for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tara M. Connelly.

Ethics declarations

Conflict of interest

Drs. Tara M. Connelly, Zoya Malik, Rishabh Seghal, Gerrard Byrnes, J Calvin Coffey and Colin Peirce declare that he/she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. This article does not contain any studies with animals performed by any of the authors. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Connelly, T.M., Malik, Z., Sehgal, R. et al. The 100 most influential manuscripts in robotic surgery: a bibliometric analysis. J Robotic Surg 14, 155–165 (2020). https://doi.org/10.1007/s11701-019-00956-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11701-019-00956-9

Keywords

Navigation