Skip to main content
Log in

Application of chemometric methods to the purity analysis of PAMAM dendrimers

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Developing analytical or instrumental methods for the purity assessment of poly(amidoamine) dendrimers (PAMAMs) is almost equally important as much as integrating novel synthesis and purification methods to obtain ideal and monodisperse dendrimers. The aim of this study was to investigate the use of chemometric methods; principal component regression (PCR), and partial least squares (PLS2) to assess the purity of PAMAMs. A full factorial experimental design was used to construct PCR and PLS2 calibration models. Absorbance spectra of PAMAMs were collected by UV–Vis spectroscopy between the wavelength ranges of 250–350 nm with 1.00 nm intervals at 101 points. PCR and PLS2 multivariate models were constructed from these full spectra. The built models were compared in terms of prediction powers by means of relative mean square error of prediction values. Validation results of these models provided compelling evidence that PCR and PLS2 models, indeed PLS2 better, could be successively used to predict PAMAM mixtures quantitatively and qualitatively in terms of components. The developed models could be used to assess the purity of PAMAMs successfully for routine laboratory analysis in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida JPM, Chen AL, Foster A, Drezek R (2011) In vivo biodistribution of nanoparticles. Nanomedicine (London, UK) 6:815–835. doi:10.2217/nnm.11.79

    Article  CAS  Google Scholar 

  • Baytekin B, Werner N, Luppertz F, Engeser M, Brueggemann J, Bitter S, Henkel R, Felder T, Schalley CA (2006) How useful is mass spectrometry for the characterization of dendrimers? “Fake defects” in the ESI and MALDI mass spectra of dendritic compounds. Int J Mass Spectrom 249(250):138–148. doi:10.1016/j.ijms.2006.01.016

    Article  Google Scholar 

  • Brereton RG (2003) Chemometrics: data analysis for the laboratory and chemical plant. Wiley, Oxford

    Book  Google Scholar 

  • Brown SD, Ferré RT (2009) Comprehensive chemometrics: linear regression modeling, non-linear regression, classification, feature selection, multivariate robust techniques. Elsevier, Oxford

    Google Scholar 

  • Caminade A-M, Laurent R, Majoral J-P (2005) Characterization of dendrimers. Adv Drug Deliv Rev 57:2130–2146. doi:10.1016/j.addr.2005.09.011

    Article  CAS  Google Scholar 

  • Erturk AS, Gurbuz MU, Tulu M, Bozdogan AE (2015) Water-soluble TRIS-terminated PAMAM dendrimers: microwave-assisted synthesis, characterization and Cu(ii) intradendrimer complexes. RSC Adv 5:60581–60595. doi:10.1039/C5RA11157A

    Article  CAS  Google Scholar 

  • Ertürk AS, Tülü M, Bozdoğan AE, Parali T (2014) Microwave assisted synthesis of Jeffamine cored PAMAM dendrimers. Eur Polym J 52:218–226. doi:10.1016/j.eurpolymj.2013.12.018

    Article  Google Scholar 

  • Giordanengo R, Mazarin M, Wu J, Peng L, Charles L (2007) Propagation of structural deviations of poly(amidoamine) fan-shape dendrimers (generations 0–3) characterized by MALDI and electrospray mass spectrometry. Int J Mass Spectrom 266:62–75. doi:10.1016/j.ijms.2007.07.002

    Article  CAS  Google Scholar 

  • Islam MT, Shi X, Balogh L, Baker JR Jr (2005) HPLC separation of different generations of poly(amidoamine) dendrimers modified with various terminal groups. Anal Chem 77:2063–2070. doi:10.1021/ac048383x

    Article  CAS  Google Scholar 

  • Joliffe I, Morgan B (1992) Principal component analysis and exploratory factor analysis. Stat Methods Med Res 1:69–95. doi:10.1177/096228029200100105

    Article  CAS  Google Scholar 

  • Kallos GJ, Tomalia DA, Hedstrand DM, Lewis S, Zhou J (1991) Molecular weight determination of a polyamidoamine Starburst polymer by electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 5:383–386. doi:10.1002/rcm.1290050902

    Article  CAS  Google Scholar 

  • Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39:268–307. doi:10.1016/j.progpolymsci.2013.07.005

    Article  CAS  Google Scholar 

  • Kumar N, Bansal A, Sarma GS, Rawal RK (2014) Chemometrics tools used in analytical chemistry: an overview. Talanta 123:186–199. doi:10.1016/j.talanta.2014.02.003

    Article  CAS  Google Scholar 

  • Li J, Piehler LT, Qin D, Baker JR, Tomalia DA, Meier DJ (2000) Visualization and characterization of poly(amidoamine) dendrimers by atomic force microscopy. Langmuir 16:5613–5616. doi:10.1021/la000035c

    Article  CAS  Google Scholar 

  • Martens H (1991) Multivariate calibration. Wiley, Oxford

    Google Scholar 

  • Martens H, Martens M (2000) Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR). Food Qual Pref 11:5–16. doi:10.1016/s0950-3293(99)00039-7

    Article  Google Scholar 

  • Martens H, Naes T (1989) Multivariate calibration. Wiley, Oxford

    Google Scholar 

  • Mekuria SL, Debele TA, Tsai H-C (2016) PAMAM dendrimer based targeted nano-carrier for bio-imaging and therapeutic agents. RSC Adv. doi:10.1039/C6RA12895E

    Google Scholar 

  • Montgomery DC (2005) Design and analysis of experiments, student solutions manual. Wiley, Oxford

    Google Scholar 

  • Mullen DG, Desai A, van Dongen MA, Barash M, Baker JR Jr, Banaszak Holl MM (2012) Best practices for purification and characterization of PAMAM dendrimer. Macromolecules 45:5316–5320. doi:10.1021/ma300485p

    Article  CAS  Google Scholar 

  • Pande S, Crooks RM (2011) Analysis of poly(amidoamine) dendrimer structure by UV–vis spectroscopy. Langmuir 27:9609–9613. doi:10.1021/la201882t

    Article  CAS  Google Scholar 

  • Parisi OI, Scrivano L, Sinicropi MS, Picci N, Puoci F (2016) Engineered polymer-based nanomaterials for diagnostic, therapeutic and theranostic applications. Mini Rev Med Chem 16:754–761. doi:10.2174/1389557515666150709112122

    Article  CAS  Google Scholar 

  • Peterson J, Allikmaa V, Subbi J, Pehk T, Lopp M (2002) Structural deviations in poly(amidoamine) dendrimers: a MALDI-TOF MS analysis. Eur Polym J 39:33–42. doi:10.1016/S0014-3057(02)00188-X

    Article  Google Scholar 

  • Peterson J, Allikmaa V, Subbi J, Pehk T, Lopp M (2003) Structural deviations in poly(amidoamine) dendrimers: a MALDI-TOF MS analysis. Eur Polym J 39:33–42. doi:10.1016/s0014-3057(02)00188-x

    Article  CAS  Google Scholar 

  • Pourianazar NT, Mutlu P, Gunduz U (2014) Bioapplications of poly(amidoamine) (PAMAM) dendrimers in nanomedicine. J Nanopart Res. doi:10.1007/s11051-014-2342-1

    Google Scholar 

  • Rivas B, Geckeler K (1992) Synthesis and metal complexation of poly(ethyleneimine) and derivatives. Polymer synthesis oxidation processes. Advances in polymer science, vol 102. Springer, Berlin, pp 171–188. doi:10.1007/3-540-55090-9_6

    Chapter  Google Scholar 

  • Rivas BL, Pereira ED, Palencia M, Sánchez J (2011) Water-soluble functional polymers in conjunction with membranes to remove pollutant ions from aqueous solutions. Prog Polym Sci 36:294–322. doi:10.1016/j.progpolymsci.2010.11.001

    Article  CAS  Google Scholar 

  • Şahin S, Işık E, Demir C (2012) Prediction of total phenolic content in extracts of Prunella species from HPLC profiles by multivariate calibration. ISRN chromatography 2012

  • Scott RWJ, Wilson OM, Crooks RM (2004) Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J Phys Chem B 109:692–704. doi:10.1021/jp0469665

    Article  Google Scholar 

  • Shi X, Banyai I, Islam MT, Lesniak W, Davis DZ, Baker JR, Balogh LP (2005) Generational, skeletal and substitutional diversities in generation one poly(amidoamine) dendrimers. Polymer 46:3022–3034. doi:10.1016/j.polymer.2005.01.081

    Article  CAS  Google Scholar 

  • Spivakov BY, Geckeler K, Bayer E (1985) Liquid-phase polymer-based retention—the separation of metals by ultrafiltration on polychelatogens. Nature (London) 315:313–315. doi:10.1038/315313a0

    Article  CAS  Google Scholar 

  • Tolić LP, Anderson GA, Smith RD, Brothers HM, Spindler R, Tomalia DA (1997) Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometric characterization of high molecular mass Starburst™ dendrimers. Int J Mass Spectrom Ion Processes 165:405–418. doi:10.1016/S0168-1176(97)00161-4

    Google Scholar 

  • Tomalia DA, Naylor AM, Goddard WA (1990) Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed 29:138–175. doi:10.1002/anie.199001381

    Article  Google Scholar 

  • van Dongen MA, Desai A, Orr BG, Baker JR Jr, Banaszak Holl MM (2013) Quantitative analysis of generation and branch defects in G5 poly(amidoamine) dendrimer. Polymer 54:4126–4133. doi:10.1016/j.polymer.2013.05.062

    Article  Google Scholar 

  • Wang H, Huang Q, Chang H, Xiao J, Cheng Y (2016) Stimuli-responsive dendrimers in drug delivery. Biomater Sci 4:375–390. doi:10.1039/c5bm00532a

    Article  CAS  Google Scholar 

  • Wise BM, Gallagher NB, Bro R, Shaver JM, Koch RS (2006) Chemometrics tutorial for PLS toolbox and solo. Eigenvector Research Inc, Wenatchee, p 414

    Google Scholar 

Download references

Acknowledgements

This research has been supported by Yıldız Technical University Scientific Research Projects Coordination Department, Project Numbers (2011-01-02-KAP04, 2011-01-02-KAP05, 2011-01-02-KAP06, and 2012-01-02-DOP05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali S. Ertürk.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest or competing financial interest related to the work described

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ertürk, A.S., Bozdoğan, A.E. & Tülü, M. Application of chemometric methods to the purity analysis of PAMAM dendrimers. Chem. Pap. 71, 127–135 (2017). https://doi.org/10.1007/s11696-016-0070-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0070-y

Keywords

Navigation