Skip to main content

Advertisement

Log in

The Impact of Bariatric Surgery on Short Term Risk of Clostridium Difficile Admissions

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background and Aims

Clostridium difficile infection (CDI) is major health care concern with reports linking it to obesity. Our aim was to investigate the little known impact of the two most common bariatric surgeries, Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), on risk of CDI admissions.

Methods

This is a retrospective cohort study using the 2013 Nationwide Readmission Database. We examined inpatient CDI rates within 120 days after RYGB (n = 40,059) and VSG (n = 45,394). In a time to event analysis we also evaluated inpatient CDI rates up to 11 months post-surgery. We chose morbidly obese patients that underwent non-emergent ventral hernia repair (VHR) as additional surgical controls (n = 9673).

Result

CDI rates were higher after RYGB than VSG in the first 30 days (odds ratio [OR] = 2.10; 95% confidence interval [CI], 1.05–4.20) with a similar but nonsignificant trend within 31–120 days. CDI rates were also higher after RYGB compared to VHR controls within 31–120 days after surgery (OR = 3.22, 95%CI: 1.31, 7.88, p = 0.01). In a time to event analysis with up to 11 months follow up, RYGB led to higher CDI compared to VSG (hazard ratio [HR] = 1.87; 95% CI, 1.12–3.13) with a trend towards higher CDI compared to VHR (HR = 1.95; 95% CI, 0.94–4.06). Similar CDI rates occurred after VSG vs VHR.

Conclusions

RYGB may increase the risk of CDI hospitalization when compared to VSG and VHR controls. This data suggest VSG may be a better bariatric choice when post-surgical CDI risk is a concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AHA:

Americans Heart Association

AHRQ:

Agency for Healthcare Research and Quality

CDI:

Clostridium Difficile infection

CI:

Confidence Interval

HCUP:

Healthcare Cost and Utilization Project

HR:

Hazard ratio

ICD-9-CM:

International Classification of Diseases, Ninth Revision, Clinical Modification

LOS:

Length of hospital stay

NRD:

Nationwide Readmission Database

OR:

Odds ratio

PPI:

Proton pump inhibitors

RYGB:

Roux-en-Y Gastric Bypass

SID:

State Inpatient Databases

VHR:

Ventral Hernia Repair

VSG:

Vertical Sleeve Gastrectomy

References

  1. To KB, Napolitan LM. Clostridium difficile infection: update on diagnosis, epidemiology, and treatment strategies. Surg Infect. 2014;15(5):490–502. https://doi.org/10.1089/sur.2013.186.

    Article  Google Scholar 

  2. Tattevin P, Buffet-Bataillon S, Donnio PY, et al. Clostridium difficile infections: do we know the real dimensions of the problem? Int J Antimicrob Agents. 2013;42(Suppl):S36–40. https://doi.org/10.1016/j.ijantimicag.2013.04.009.

    Article  CAS  PubMed  Google Scholar 

  3. Lo Vecchio A, Zacur GM. Clostridium difficile infection: an update on epidemiology, risk factors, and therapeutic options. Curr Opin Gastroenterol. 2012;28(1):1–9. https://doi.org/10.1097/MOG.0b013e32834bc9a9.

    Article  PubMed  Google Scholar 

  4. Bloomfield LE, Riley TV. Epidemiology and risk factors for community-associated clostridium difficile infection: a narrative review. Infect Dis Ther. 2016;5(3):231–51. https://doi.org/10.1007/s40121-016-0117-y.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rodríguez-Pardo D et al. Epidemiology of clostridium difficile Infection and risk factors for unfavorable clinical outcomes: results of a hospital-based study in Barcelona, Spain. J Clin Microbiol. 2013;51(5):1465–73. https://doi.org/10.1128/JCM.03352-12.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Deshpande A, Pasupuleti V, Thota P, et al. Community-associated clostridium difficile infection and antibiotics: a meta-analysis. J Antimicrob Chemother. 2013;68(9):1951–61. https://doi.org/10.1093/jac/dkt129.

    Article  CAS  PubMed  Google Scholar 

  7. Olsen MA, Young-Xu Y, Stwalley D, et al. The burden of clostridium difficile infection: estimates of the incidence of CDI from U.S. administrative databases. BMC Infect Dis. 2016;16(1):177. https://doi.org/10.1186/s12879-016-1501-7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Punni E, Pula JL, Asslo F, et al. Is obesity a risk factor for Clostridium difficile infection? Obes Res Clin Pract. 2015;9(1):50–4. https://doi.org/10.1016/j.orcp.2013.12.007.

    Article  PubMed  Google Scholar 

  9. Madan R, Petri Jr WA. Role of obesity and adipose tissue-derived cytokine leptin during Clostridium difficile infection. Anaerobe. 2015;34:182–6. https://doi.org/10.1016/j.anaerobe.2014.12.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tsai F, Coyle WJ. The microbiome and obesity: is obesity linked to our gut flora? Curr Gastroenterol Rep. 2009;11(4):307–13. https://doi.org/10.1007/s11894-009-0045-z.

    Article  PubMed  Google Scholar 

  11. Leung J, Burke B, Ford D, et al. Possible association between obesity and Clostridium difficile infection. Emerg Infect Dis. 2013;19(11):1791–8. https://doi.org/10.3201/eid1911.130618.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bishara J, Farah R, Mograbi J, et al. Obesity as a risk factor for Clostridium Difficile infection. Clin Infect Dis. 2013;57(4):489–93. https://doi.org/10.1093/cid/cit280.

    Article  PubMed  Google Scholar 

  13. Nathanson BH, Higgins TL, McGee WT. The dangers of extreme body mass index values in patients with Clostridium difficile. Infection. 2017;45(6):787–93. https://doi.org/10.1007/s15010-017-1036-x.

    Article  CAS  PubMed  Google Scholar 

  14. Mulki R et al. Body mass index greater than 35 is associated with severe Clostridium Difficile infection. Aliment Pharmacol Ther. 2016;

  15. Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2011. Obes Surg. 2013;23(4):427–36. https://doi.org/10.1007/s11695-012-0864-0.

    Article  PubMed  Google Scholar 

  16. ASMBS estimates of bariatric surgeries. Accessed on 02/06/2017.

  17. Puzziferri N, Roshek III TB, Mayo HG, et al. Long-term follow-up after bariatric surgery: a systematic review. JAMA. 2014;312(9):934–42. https://doi.org/10.1001/jama.2014.10706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vendrell J, Broch M, Vilarrasa N, et al. Resistin, adiponectin, ghrelin, leptin, and proinflammatory cytokines: relationships in obesity. Obes Res. 2004;12(6):962–71. https://doi.org/10.1038/oby.2004.118.

    Article  CAS  PubMed  Google Scholar 

  19. Laimer M, Ebenbichler CF, Kaser S, et al. Markers of chronic inflammation and obesity: a prospective study on the reversibility of this association in middle-aged women undergoing weight loss by surgical intervention. Int J Obes Relat Metab Disord. 2002;26(5):659–62. https://doi.org/10.1038/sj.ijo.0801970.

    Article  CAS  PubMed  Google Scholar 

  20. Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22(2):228–38. https://doi.org/10.1016/j.cmet.2015.07.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Anhe FF et al. The gut microbiota as a mediator of metabolic benefits after bariatric surgery. Can J Diabetes. 2017;41(4):439–47. https://doi.org/10.1016/j.jcjd.2017.02.002.

    Article  PubMed  Google Scholar 

  22. Ryan KK, Tremaroli V, Clemmensen C, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 2014;509(7499):183–8. https://doi.org/10.1038/nature13135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dubberke ER, Butler AM, Nyazee HA, et al. The impact of ICD-9-CM code rank order on the estimated prevalence of Clostridium difficile infections. Clin Infect Dis. 2011;53(1):20–5. https://doi.org/10.1093/cid/cir246.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dubberke ER et al. ICD-9 codes and surveillance for Clostridium difficile-associated disease. Emerg Infect Dis. 2006;12(10):1576–9. https://doi.org/10.3201/eid1210.060016.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ali M, Ananthakrishnan AN, Ahmad S, et al. Clostridium difficile infection in hospitalized liver transplant patients: a nationwide analysis. Liver Transpl. 2012;18(8):972–8. https://doi.org/10.1002/lt.23449.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bajaj JS, Ananthakrishnan AN, Hafeezullah M, et al. Clostridium difficile is associated with poor outcomes in patients with cirrhosis: a national and tertiary center perspective. Am J Gastroenterol. 2010;105(1):106–13. https://doi.org/10.1038/ajg.2009.615.

    Article  PubMed  Google Scholar 

  27. Kassam Z, Cribb Fabersunne C, Smith MB, et al. Clostridium difficile associated risk of death score (CARDS): a novel severity score to predict mortality among hospitalised patients with C. difficile infection. Aliment Pharmacol Ther. 2016;43(6):725–33. https://doi.org/10.1111/apt.13546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mamic P, Heidenreich PA, Hedlin H, et al. Hospitalized patients with heart failure and common bacterial infections: a nationwide analysis of concomitant Clostridium difficile infection rates and in-hospital mortality. J Card Fail. 2016;22(11):891–900. https://doi.org/10.1016/j.cardfail.2016.06.005.

    Article  PubMed  Google Scholar 

  29. Flagg A, Koch CG, Schiltz N, et al. Analysis of Clostridium difficile infections after cardiac surgery: epidemiologic and economic implications from national data. J Thorac Cardiovasc Surg. 2014;148(5):2404–9. https://doi.org/10.1016/j.jtcvs.2014.04.017.

    Article  PubMed  Google Scholar 

  30. McDonald LC, Coignard B, Dubberke E, et al. Recommendations for surveillance of Clostridium difficile-associated disease. Infect Control Hosp Epidemiol. 2007;28(2):140–5. https://doi.org/10.1086/511798.

    Article  PubMed  Google Scholar 

  31. Jencks SF, Williams MV, Coleman EA. Rehospitalizations among patients in the Medicare fee-for-service program. N Engl J Med. 2009;360(14):1418–28. https://doi.org/10.1056/NEJMsa0803563.

    Article  CAS  PubMed  Google Scholar 

  32. Southern WN, Rahmani R, Aroniadis O, et al. Post-surgical Clostridium difficile-associated diarrhea. Surgery. 2010;148(1):24–30. https://doi.org/10.1016/j.surg.2009.11.021.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Abdelsattar Z et al. The postoperative burden of hospital acquired clostridium difficile infection. Infect Control Hosp Epidemiol. 2015;36(1):40–6. https://doi.org/10.1017/ice.2014.8.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Renvall S, Niinikoski J, Aho AJ. Wound infections in abdominal surgery. A prospective study on 696 operations. Acta Chir Scand. 1980;146(1):25–30.

    CAS  PubMed  Google Scholar 

  35. Brim RL, Miller FG. The potential benefit of the placebo effect in sham-controlled trials: implications for risk-benefit assessments and informed consent. J Med Ethics. 2013;39(11):703–7. https://doi.org/10.1136/medethics-2012-101045.

    Article  PubMed  Google Scholar 

  36. Swank DJ, Swank-Bordewijk SCG, Hop WCJ, et al. Laparoscopic adhesiolysis in patients with chronic abdominal pain: a blinded randomised controlled multi-centre trial. Lancet. 2003;361(9365):1247–51. https://doi.org/10.1016/S0140-6736(03)12979-0.

    Article  CAS  PubMed  Google Scholar 

  37. Roughead EE et al. Proton pump inhibitors and risk of Clostridium difficile infection: a multi-country study using sequence symmetry analysis. Expert Opin Drug Saf. 2016:1–7.

  38. Young MT, Phelan MJ, Nguyen NT. A decade analysis of trends and outcomes of male vs female patients who underwent bariatric surgery. J Am Coll Surg. 2016;222(3):226–31. https://doi.org/10.1016/j.jamcollsurg.2015.11.033.

    Article  PubMed  Google Scholar 

  39. Simon KL, Frelich MJ, Gould JC, et al. Inpatient outcomes after elective versus non-elective ventral hernia repair. J Surg Res. 2015;198(2):305–10. https://doi.org/10.1016/j.jss.2015.03.073.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pournaras DJ, Osborne A, Hawkins SC, et al. Remission of type 2 diabetes after gastric bypass and banding: mechanisms and 2 year outcomes. Ann Surg. 2010;252(6):966–71. https://doi.org/10.1097/SLA.0b013e3181efc49a.

    Article  PubMed  Google Scholar 

  41. Courcoulas AP, Christian NJ, Belle SH, et al. Weight change and health outcomes at 3 years after bariatric surgery among individuals with severe obesity. JAMA. 2013;310(22):2416–25. https://doi.org/10.1001/jama.2013.280928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maciejewski ML, Arterburn DE, van Scoyoc L, et al. Bariatric surgery and long-term durability of weight loss. JAMA Surg. 2016;151(11):1046–55. https://doi.org/10.1001/jamasurg.2016.2317.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ward EK, Schuster DP, Stowers KH, et al. The effect of PPI use on human gut microbiota and weight loss in patients undergoing laparoscopic Roux-en-Y gastric bypass. Obes Surg. 2014;24(9):1567–71. https://doi.org/10.1007/s11695-014-1275-1.

    Article  PubMed  Google Scholar 

  44. Sillakivi T, Suumann J, Kirsimägi U, et al. Plasma levels of gastric biomarkers in patients after bariatric surgery: biomarkers after bariatric surgery. Hepato-Gastroenterology. 2013;60(128):2129–32.

    PubMed  Google Scholar 

  45. Morinigo R et al. Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab. 2006;91(5):1735–40. https://doi.org/10.1210/jc.2005-0904.

    Article  CAS  PubMed  Google Scholar 

  46. Smith CD, Herkes SB, Behrns KE, et al. Gastric acid secretion and vitamin B12 absorption after vertical Roux-en-Y gastric bypass for morbid obesity. Ann Surg. 1993;218(1):91–6. https://doi.org/10.1097/00000658-199307000-00014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dr. Hussan was involved in conception, design, interpretation of data and the drafting and critical revision of the manuscript. Mr. Kyle Porter was involved in study design, performed the acquisition and the statistical analysis of the data and provided critical revision of the manuscript. The above authors had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Dr. Ugbarugba collected the institutional data and was involved in design, interpretation of data and critical revision of the manuscript. Drs. Bailey, Needleman, Noria, O’Donnell and Clinton were involved in design, interpretation of data and critical revision of the manuscript. All gave final approval of the submitted manuscript and take responsibility for the integrity of the work.

Corresponding author

Correspondence to Hisham Hussan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Statement of Informed Consent

NRD database is comprised of de-identified patient information and does not meet the criteria for human subject and as such did not need institutional Review Board (IRB) approval nor require any form of consenting process prior to analysis of the data. Our supplemental tertiary center analysis was a de-identified retrospective chart review that contained no identifiable information and required no informed consent. Thus, no identifying information is available in the article and no informed consent was obtained.

Statement of Human and Animal Right

For this type of study formal consent is not required.

Additional information

AWARD:

This research was presented as an oral at the American College of Gastroenterology (ACG) 2016 National Meeting and awarded the 2016 ACG Obesity Award for Best Scientific Paper.

Grant Support:

No financial support was utilized in the creation of this project.

Electronic supplementary material

ESM 1

(DOCX 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussan, H., Ugbarugba, E., Bailey, M.T. et al. The Impact of Bariatric Surgery on Short Term Risk of Clostridium Difficile Admissions. OBES SURG 28, 2006–2013 (2018). https://doi.org/10.1007/s11695-018-3131-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-018-3131-1

Keywords

Navigation