Skip to main content

Advertisement

Log in

Cardiometabolic Profile Related to Body Adiposity Identifies Patients Eligible for Bariatric Surgery More Accurately than BMI

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Eligibility criteria for bariatric surgery (BS) are based on BMI and the presence of major comorbidities. Our aim was to analyze the usefulness of body adiposity determination in establishing the indication for BS.

Methods

In order to analyze the cardiometabolic risk according to eligibility criteria for BS, four groups were studied. Morbidly obese patients with BMI ≥40 kg/m2 (n = 360), and obese subjects with BMI ≥35 kg/m2 and at least one comorbidity (n = 431), represented two groups of patients meeting original NIH criteria for BS. A third group included two cohorts of patients with a high body fat (BF)% that do not meet the original NIH eligibility criteria for BS: patients with either a BMI <35 kg/m2 or a BMI ≥35 kg/m2 without comorbidities (n = 266, NEHF). Lean subjects by BMI were the reference group (n = 140). BMI, BF% and markers of insulin sensitivity, lipid profile, and cardiovascular risk were measured.

Results

Individuals from the NEHF group exhibited increased HbA1c (P < 0.05) and decreased insulin sensitivity evidenced by a significant reduction in QUICKI (P < 0.001). Triglyceride concentrations were similarly increased (P < 0.05) in the three groups of obese patients. Uric acid concentrations were significantly elevated (P < 0.01) to a similar extent in the obese groups. Levels of the inflammatory marker CRP and hepatic enzymes were significantly increased in the three obese groups.

Conclusion

The present study provides evidence for the existence of an adverse cardiometabolic profile in subjects currently considered to be outside traditional NIH guidelines but exhibiting a highly increased adiposity. It is concluded that body composition analysis yields valuable information to be incorporated into indication criteria for BS and that adiposity may be an independent indicator for BS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Frühbeck G, Toplak H, Woodward E, et al. Obesity: the gateway to ill health—an EASO position statement on a rising public health, clinical and scientific challenge in Europe. Obes Facts. 2013;6:117–20.

    Article  PubMed  Google Scholar 

  2. Frühbeck G, Gómez-Ambrosi J. Control of body weight: a physiologic and transgenic perspective. Diabetologia. 2003;46:143–72.

    PubMed  Google Scholar 

  3. Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383:1068–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Apovian CM, Gokce N. Obesity and cardiovascular disease. Circulation. 2012;125:1178–82.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Cusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology. 2012;142:711–25 e6.

    Article  Google Scholar 

  6. Jordan AS, McSharry DG, Malhotra A. Adult obstructive sleep apnoea. Lancet. 2014;383:736–47.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Campo A, Frühbeck G, Zulueta JJ, et al. Hyperleptinaemia, respiratory drive and hypercapnic response in obese patients. Eur Respir J. 2007;30:223–31.

    Article  CAS  PubMed  Google Scholar 

  8. Catalán V, Gómez-Ambrosi J, Rodríguez A, et al. Adipose tissue immunity and cancer. Front Physiol. 2013;4:275.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Bhaskaran K, Douglas I, Forbes H, et al. Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5.24 million UK adults. Lancet. 2014;384:755–65.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Withrow D, Alter DA. The economic burden of obesity worldwide: a systematic review of the direct costs of obesity. Obes Rev. 2011;12:131–41.

    Article  CAS  PubMed  Google Scholar 

  11. Tobias DK, Pan A, Jackson CL, et al. Body-mass index and mortality among adults with incident type 2 diabetes. N Engl J Med. 2014;370:233–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Frühbeck G, Gómez Ambrosi J, Salvador J. Leptin-induced lipolysis opposes the tonic inhibition of endogenous adenosine in white adipocytes. FASEB J. 2001;15:333–40.

    Article  PubMed  Google Scholar 

  13. Frühbeck G. Overview of adipose tissue and its role in obesity and metabolic disorders. Methods Mol Biol. 2008;456:1–22.

    Article  PubMed  Google Scholar 

  14. Poulain-Godefroy O, Lecoeur C, Pattou F, et al. Inflammation is associated with a decrease of lipogenic factors in omental fat in women. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1–7.

    Article  CAS  PubMed  Google Scholar 

  15. Vest AR, Heneghan HM, Schauer PR, et al. Surgical management of obesity and the relationship to cardiovascular disease. Circulation. 2013;127:945–59.

    Article  PubMed  Google Scholar 

  16. Sjöström L, Narbro K, Sjöström CD, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357:741–52.

    Article  PubMed  Google Scholar 

  17. Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366:1577–85.

    Article  CAS  PubMed  Google Scholar 

  18. Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366:1567–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes—3-year outcomes. N Engl J Med. 2014;370:2002–13.

    Article  PubMed  Google Scholar 

  20. Sjöström L, Peltonen M, Jacobson P, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012;307:56–65.

    Article  PubMed  Google Scholar 

  21. Pontiroli AE, Morabito A. Long-term prevention of mortality in morbid obesity through bariatric surgery. A systematic review and meta-analysis of trials performed with gastric banding and gastric bypass. Ann Surg. 2011;253:484–7.

    Article  PubMed  Google Scholar 

  22. Neff KJ, le Roux CW. Bariatric surgery: a best practice article. J Clin Pathol. 2013;66:90–8.

    Article  PubMed  Google Scholar 

  23. Mechanick JI, Youdim A, Jones DB, et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient—2013 update: cosponsored by American association of clinical endocrinologists, the obesity society, and American society for metabolic & bariatric surgery. Obesity. 2013;21 Suppl 1:S1–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Fried M, Yumuk V, Oppert JM, et al. Interdisciplinary European guidelines on metabolic and bariatric surgery. Obes Surg. 2014;24:42–55.

    Article  CAS  PubMed  Google Scholar 

  25. Gómez-Ambrosi J, Silva C, Galofré JC, et al. Body adiposity and type 2 diabetes: increased risk with a high body fat percentage even having a normal BMI. Obesity. 2011;19:1439–44.

    Article  PubMed  Google Scholar 

  26. Gómez-Ambrosi J, Silva C, Galofré JC, et al. Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int J Obes. 2012;36:286–94.

    Article  Google Scholar 

  27. Gómez-Ambrosi J, Silva C, Catalán V, et al. Clinical usefulness of a new equation for estimating body fat. Diabetes Care. 2012;35:383–8.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Blundell JE, Dulloo AG, Salvador J, et al. Beyond BMI—phenotyping the obesities. Obes Facts. 2014;7:322–8.

    Article  PubMed  Google Scholar 

  29. Frühbeck G. Obesity: screening for the evident in obesity. Nat Rev Endocrinol. 2012;8:570–2.

    Article  PubMed  Google Scholar 

  30. Gastrointestinal surgery for severe obesity: National Institutes of Health Consensus Development Conference Statement. Am J Clin Nutr. 1992;55:615S-9S.

  31. Gómez-Ambrosi J, Salvador J, Rotellar F, et al. Increased serum amyloid A concentrations in morbid obesity decrease after gastric bypass. Obes Surg. 2006;16:262–9.

    Article  PubMed  Google Scholar 

  32. Muruzábal FJ, Frühbeck G, Gómez-Ambrosi J, et al. Immunocytochemical detection of leptin in non-mammalian vertebrate stomach. Gen Comp Endocrinol. 2002;128:149–52.

    Article  PubMed  Google Scholar 

  33. Sorbi D, Boynton J, Lindor KD. The ratio of aspartate aminotransferase to alanine aminotransferase: potential value in differentiating nonalcoholic steatohepatitis from alcoholic liver disease. Am J Gastroenterol. 1999;94:1018–22.

    Article  CAS  PubMed  Google Scholar 

  34. Kotronen A, Peltonen M, Hakkarainen A, et al. Prediction of non-alcoholic fatty liver disease and liver fat using metabolic and genetic factors. Gastroenterology. 2009;137:865–72.

    Article  CAS  PubMed  Google Scholar 

  35. Prentice AM, Jebb SA. Beyond body mass index. Obes Rev. 2001;2:141–7.

    Article  CAS  PubMed  Google Scholar 

  36. Gómez-Ambrosi J, Salvador J, Frühbeck G. Letter by Gómez-Ambrosi et al. regarding article, “Clinical assessment and management of adult obesity”. Circulation. 2013;128:e39.

    Article  PubMed  Google Scholar 

  37. Gómez-Ambrosi J, Catalán V, Rodríguez A, et al. Involvement of serum vascular endothelial growth factor family members in the development of obesity in mice and humans. J Nutr Biochem. 2010;21:774–80.

    Article  PubMed  Google Scholar 

  38. Frige F, Laneri M, Veronelli A, et al. Bariatric surgery in obesity: changes of glucose and lipid metabolism correlate with changes of fat mass. Nutr Metab Cardiovasc Dis. 2009;19:198–204.

    Article  CAS  PubMed  Google Scholar 

  39. Sjöström L. Review of the key results from the Swedish obese subjects (SOS) trial—a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273:219–34.

    Article  PubMed  Google Scholar 

  40. Miras AD, le Roux CW. Metabolic surgery: shifting the focus from glycaemia and weight to end-organ health. Lancet Diabetes Endocrinol. 2014;2:141–51.

    Article  PubMed  Google Scholar 

  41. Gómez-Ambrosi J, Pastor C, Salvador J, et al. Influence of waist circumference on the metabolic risk associated with impaired fasting glucose: effect of weight loss after gastric bypass. Obes Surg. 2007;17:585–91.

    Article  PubMed  Google Scholar 

  42. Cummings DE. Metabolic surgery for type 2 diabetes. Nat Med. 2012;18:656–8.

    Article  CAS  PubMed  Google Scholar 

  43. Li Q, Chen L, Yang Z, et al. Metabolic effects of bariatric surgery in type 2 diabetic patients with body mass index < 35 kg/m2. Diabetes Obes Metab. 2012;14:262–70.

    Article  CAS  PubMed  Google Scholar 

  44. Cohen RV, Pinheiro JC, Schiavon CA, et al. Effects of gastric bypass surgery in patients with type 2 diabetes and only mild obesity. Diabetes Care. 2012;35:1420–8.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Kashyap SR, Bhatt DL, Wolski K, et al. Metabolic effects of bariatric surgery in patients with moderate obesity and type 2 diabetes: Analysis of a randomized control trial comparing surgery with intensive medical treatment. Diabetes Care. 2013;36:2175–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Ikramuddin S, Korner J, Lee WJ, et al. Roux-en-Y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: the Diabetes Surgery Study randomized clinical trial. JAMA. 2013;309:2240–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Sjöholm K, Anveden A, Peltonen M, et al. Evaluation of current eligibility criteria for bariatric surgery: diabetes prevention and risk factor changes in the Swedish obese subjects (SOS) study. Diabetes Care. 2013;36:1335–40.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Expert WHO. Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363:157–63.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank all of the members of the Nutrition Unit of the Department of Endocrinology & Nutrition (Clínica Universidad de Navarra, Pamplona, Spain) for their technical help.

Funding

The study was supported by grants from the ISCIII (PI09/91029, PI11/02681 and PI12/00515), the Department of Health (31/2009) of the Gobierno de Navarra, Fundación Caja Navarra (20–2014) and by the ISCIII, Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, CIBERobn, Spain.

Conflict of Interest

All authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gema Frühbeck.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOC 137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Ambrosi, J., Moncada, R., Valentí, V. et al. Cardiometabolic Profile Related to Body Adiposity Identifies Patients Eligible for Bariatric Surgery More Accurately than BMI. OBES SURG 25, 1594–1603 (2015). https://doi.org/10.1007/s11695-014-1566-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-014-1566-6

Keywords

Navigation