Skip to main content
Log in

Composition, antioxidant activity and rheological characteristics of spreadable pastes with blackberry pulp (Rubus fruticosus)

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the composition, antioxidant activity and rheological characteristics of spreadable pastes with blackberry pulp (BP) containing cream (C) or cream cheese (CC). Spreadable pastes were prepared in different ratios (1:3, 1:1, and 3:1, w/w). When the amount of blackberry pulp is greater in spreadable pastes containing cheese or cream cheese, the contents of dry matter, lipids, protein, and ash are minor, due to the composition of the blackberry pulp. The antioxidant activity was determined by ABTS [2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt] and DPPH (2,2-diphenil-1-picrylhydrazyl) assays. The results indicate that when the proportion of blackberry pulp is greater in spreadable pastes, the antioxidant activity increases in a range of 43.51–44.50%, using the Trolox equivalent antioxidant capacity (TEAC) method. Spreadable pastes presented pseudoplastic non-Newtonian behavior, with n < 1. In general, the apparent viscosity was greater in spreadable pastes BP-CC than in BP-C. Spreadable pastes showed a predominance of the elastic component G′ > G″. The creep curves presented a recovery between 56.0 and 86.2% for BP-C and between 66.3 and 85.0% for BP-CC, indicating viscoelastic solid behavior. The viscoelastic behavior of pastes was adjusted by the Burgers model with a Kelvin-Voigt element. The rheological properties and antioxidant activity of spreadable pastes can increase interest in characterizing them as functional and health foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L. Kaume, L.R. Howard, L. Devareddy, J. Agric. Food Chem. 60(23), 5716 (2012). https://doi.org/10.1021/jf203318p

    Article  CAS  PubMed  Google Scholar 

  2. N. Koczka, E. Stefanovits-Bányai, E. Prokaj, Not. Bot. Horti Agrobot. 46(2), 563–569 (2018). https://doi.org/10.15835/nbha46210993

    Article  CAS  Google Scholar 

  3. M. Jazić, Z. Kukrić, J. Vulić, D. Četojević-Simin, J. Food Sci. Technol. 54(1), 194–201 (2019). https://doi.org/10.1111/ijfs.13923

    Article  CAS  Google Scholar 

  4. M.C. Caruso, F. Galgano, R. Tolve, M. Pecora, I. Tedesco, F. Favatic, N. Condelli, J. Berry Res. 6(3), 321–332 (2016). https://doi.org/10.3233/JBR-160140

    Article  Google Scholar 

  5. A. Gramza-Michałowska, M. Bueschke, B. Kulczyński, A. Gliszczyńska-Świgło, D. Kmiecik, A. Bilska, M. Purłan, L. Wałęsa, M. Ostrowski, M. Filipczuk, A. Jędrusek-Golińska, J. Food Meas. Charact. 13, 1739–1747 (2019). https://doi.org/10.1007/s11694-019-00079-7

    Article  Google Scholar 

  6. D. Felixda Silva, C. Itoda, C.I.L. Franco Rosa, A.C. Pelaes Vital, L.N. Yamamoto, L.Y. Yamamoto, R. Vasconcelos Botelho, P.T. Matumoto-Pintro, J. Food Sci. Technol. 55(11), 4642–4649 (2018). https://doi.org/10.1007/s13197-018-3405-6

    Article  CAS  Google Scholar 

  7. A.P. Stafussa, V. Rampazzo, R.R. Fernandes, A.T. Franco, E. Bona, G.M. Maciel, C.W.I. Haminiuk, J. Texture Stud. 50(2), 114–123 (2019). https://doi.org/10.1111/jtxs.1237

    Article  PubMed  Google Scholar 

  8. X. Zhang, Y. Yang, D. Zhao, Effect of blueberry on spreadable processed cheese. J. Northeast Agric. Univ. (English edition) 18(2), 73–78 (2011). https://doi.org/10.1016/s1006-8104(12)60013-0

    Article  Google Scholar 

  9. M.N. Santos Guedes, C.M. Patto de Abreu, L.A. Castilho Maro, R. Pio, J.R. de Abreu, J.O. de Oliveira, Acta Sci. Agron. 35(2), 191 (2013). https://doi.org/10.4025/actasciagron.v35i2.16630

    Article  Google Scholar 

  10. J.F. Vélez-Ruiz, G.V. Barbosa-Cánovas, Crit. Rev. Food Sci. Nutri. 37, 311 (1997). https://doi.org/10.1080/10408399709527778

    Article  Google Scholar 

  11. S. Bayarri, I. Carbonell, E. Costell, J. Dairy Sci. 95(12), 6926–6936 (2012). https://doi.org/10.3168/jds.2012-5711

    Article  CAS  PubMed  Google Scholar 

  12. P.E. Macdougall, L. Ong, M.V. Palmer, S.L. Gras, Int. Dairy J. 99, 104548 (2019). https://doi.org/10.1016/j.idairyj.2019.104548

    Article  CAS  Google Scholar 

  13. Z. Long, M. Zhao, Q. Zhao, B. Yang, L. Liu, Food Chem. 131, 748 (2012). https://doi.org/10.1016/j.foodchem.2011.09.028

    Article  CAS  Google Scholar 

  14. M. Benn, Agent for altering the color of keratin fibers comprisinga rheology modifying polymer and hgh levels of afatty substance in a creamsystem. US Patent 8,920,521. (2014)

  15. S.K. Lee, H. Klostermeyer, S.G. Anema, Int. Dairy J. 50, 15–23 (2015). https://doi.org/10.1016/j.idairyj.2015.06.001

    Article  CAS  Google Scholar 

  16. V. Nguyen, C.T.M. Duong, V. Vu, J. Food Eng. 163, 32 (2015). https://doi.org/10.1016/j.jfoodeng.2015.04.026

    Article  CAS  Google Scholar 

  17. G. Álvarez, A. Miguel, J. López, F. Bueso, Biblioteca Wilson Popenoe. Honduras: Zamorano. pp. 1–32 (2008), https://bdigital.zamorano.edu/handle/11036/140. Accessed 26 June 2017

  18. I. Peinado, E. Rosa, A. Heredia, A. Andrés, J. Food Eng. 113, 365 (2012). https://doi.org/10.1016/j.jfoodeng.2012.06.008

    Article  CAS  Google Scholar 

  19. A. Lucera, C. Costa, V. Marinelli, M.A. Saccotelli, M.A. Del Nobile, A. Conte, Antioxidants 7, 61 (2018). https://doi.org/10.3390/antiox7050061

    Article  CAS  PubMed Central  Google Scholar 

  20. E. Atwaa, M. Ramadan, E. Abd El-Sattar, J. Food Dairy Sci. 11(5), 127–132 (2020). https://doi.org/10.21608/jfds.2020.102741

    Article  Google Scholar 

  21. M. Schwartz, V. Quítrar, C. Daccarett, J. Callejas, Grasas Aceites 60(5), 453–459 (2009). https://doi.org/10.3989/gya.020609

    Article  CAS  Google Scholar 

  22. A. Shakerardekani, R. Karim, H. Mohd, N. Ling, Int. Mol. Sci. 14(2), 4223–4241 (2013). https://doi.org/10.3390/ijms14024223

    Article  CAS  Google Scholar 

  23. P. Rayment, S.B. Ross-Murphy, P.R. Ellis, Carbohydr. Polym. 35(1–2), 55–63 (1998). https://doi.org/10.1016/S0144-8617(97)00231-2

    Article  CAS  Google Scholar 

  24. G. Schramm, A Practical Approach to Rheology and Rheometry (Thermo Haake Karlsruhe, Germany, 1994), pp. 1–15

    Google Scholar 

  25. M.A. Rao, in Rheology of Fluid, Semisolid, and Solid Foods (Springer, New York, 2014), pp. 109–114. (161)

    Book  Google Scholar 

  26. AOAC, Official Methods of Analysis of AOAC International, 18th edn. (AOAC International, Gaithersburg, 2005)

    Google Scholar 

  27. J. Pérez-Jiménez, S. Arranz, M. Tabernero, M.E. Díaz-Rubio, J. Serrano, I. Goñi, F. Saura-Calixto, Food Res. Int. 41(3), 274–285 (2008). https://doi.org/10.1016/j.foodres.2007.12.004

    Article  CAS  Google Scholar 

  28. A. Gupta, B. Mann, R. Kumar, R.B. Sangwan, Int. J. Dairy Technol. 62(3), 339–347 (2009). https://doi.org/10.1111/j.1471-0307.2009.00509.x

    Article  CAS  Google Scholar 

  29. K. Zainoldin, A. Baba, World Acad. Sci. Eng. Technol. 60, 361 (2009). https://doi.org/10.5281/zenodo.1078638

    Article  Google Scholar 

  30. M. Karaaslan, M. Ozden, H. Vardin, H. Turkoglu, LWT-Food Sci. Technol. 44(4), 1065–1072 (2011). https://doi.org/10.1016/j.lwt.2010.12.009

    Article  CAS  Google Scholar 

  31. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Free Radic. Biol. Med. 26(9–10), 1231–1237 (1999). https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  CAS  PubMed  Google Scholar 

  32. E. Pastrana-Bonilla, C.C. Akoh, S. Sellappan, G. Krewer, J. Agric. Food Chem. 51(18), 5497–5503 (2003). https://doi.org/10.1021/jf030113c

    Article  CAS  PubMed  Google Scholar 

  33. W. Brand-Williams, M.E. Cuvelier, C. Berset, LWT-Food Sci. Technol. 28, 25 (1995). https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  34. E.M. Kuskoski, A.G. Asuero, A.M. Troncoso, J. Mancini-Filho, R. Fett, Food Sci. Technol. (Campinas) 25(4), 726–732 (2005). https://doi.org/10.1590/s0101-20612005000400016

    Article  CAS  Google Scholar 

  35. J.F. Steffe, Rheological Methods in Food Process Engineering, 2nd edn. (Freeman press, 1996), pp. 255–358

  36. T. Sanz, A. Salvador, M.J. Hernández, Creep-Recovery and Oscillatory Rheology of Flour-Based Systems in Advances in Food Rheology and Its Applications (Elsevier, UK, 2017), pp. 277–295. https://doi.org/10.1016/B978-0-08-100431-9.00011-5

    Book  Google Scholar 

  37. M. Dolz, M.J. Hernández, J. Delegido, Food Hydrocoll. 22(3), 421–427 (2008). https://doi.org/10.1016/j.foodhyd.2006.12.011

    Article  CAS  Google Scholar 

  38. H.M. Coronado, L.S. Vega, T.R. Gutiérrez, F.M. Vázquez, V.C. Radilla, Rev. Chil. Nutr. 42(2), 206–212 (2015). https://doi.org/10.4067/S0717-75182015000200014

    Article  Google Scholar 

  39. A. Floegel, D.O. Kim, S.J. Sang-Jin, S.I. Koo, O.K. Chun, J. Food Compos. Anal. 24(7), 1043–1048 (2011). https://doi.org/10.1016/j.jfca.2011.01.008

    Article  CAS  Google Scholar 

  40. L.O. Figura, A.A. Teixeira, Food Physics: Physical Properties-Measurement and Applications (Springer, Cham, 2007), pp. 139–142. https://doi.org/10.1007/b107120

    Book  Google Scholar 

  41. A.L.B. Penna, G. Subbarao, G.V. Barbosa-Cánovas, Food Res. Int. 40(4), 510–519 (2007). https://doi.org/10.1016/j.foodres.2007.01.001

    Article  Google Scholar 

  42. A. Koksoy, M. Kilic, Food Hydrocoll. 18(4), 593–600 (2004). https://doi.org/10.1016/j.foodhyd.2003.10.002

    Article  CAS  Google Scholar 

  43. H.A. Jiménez-Avalos, E.G. Ramos-Ramírez, J.A. Salazar-Montoya, Carbohydr. Polym. 62(18), 11–18 (2005). https://doi.org/10.1016/j.carbpol.2005.07.007

    Article  CAS  Google Scholar 

  44. A. Kurt, H. Gençcelep, J. Food Eng. 237, 128–136 (2018). https://doi.org/10.1016/j.jfoodeng.2018.05.028

    Article  CAS  Google Scholar 

  45. H.H. Winter, F. Chambon, J. Rheol. 30, 367 (1986). https://doi.org/10.1122/1.549853

    Article  CAS  Google Scholar 

  46. J.F. Douglas, Gels 4(1), 19 (2018). https://doi.org/10.3390/gels4010019

    Article  CAS  PubMed Central  Google Scholar 

  47. S. Bayarri, I. Chuliá, E. Costell, Food Hydrocoll. 24(6–7), 578–587 (2010). https://doi.org/10.1016/j.foodhyd.2010.02.004

    Article  CAS  Google Scholar 

  48. J.D. Ferry, Viscoelastic Properties of Polymers, 3rd edn. (Wiley, Hoboken, 1980), pp. 33–67

    Google Scholar 

  49. J. Kaschta, F. Schwarzl, Rheol. Acta 33, 530–541 (1994). https://doi.org/10.1007/BF00366337

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CONACYT for the scholarship granted to SHP # 298965. We would also like to thank Eng. Ma. Dolores Díaz Cervantes and Eng. Miguel Márquez Robles for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Alfredo Salazar-Montoya.

Ethics declarations

Conflict of interest

No conflict of interest is declared related to the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salazar-Montoya, J.A., Hereira-Pacheco, S., Cruz-Orea, A. et al. Composition, antioxidant activity and rheological characteristics of spreadable pastes with blackberry pulp (Rubus fruticosus). Food Measure 16, 1459–1471 (2022). https://doi.org/10.1007/s11694-022-01279-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01279-4

Keywords

Navigation