Skip to main content
Log in

Serum mitochondrial tsRNA serves as a novel biomarker for hepatocarcinoma diagnosis

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC), which makes up the majority of liver cancer, is induced by the infection of hepatitis B/C virus. Biomarkers are needed to facilitate the early detection of HCC, which is often diagnosed too late for effective therapy. The tRNA-derived small RNAs (tsRNAs) play vital roles in tumorigenesis and are stable in circulation. However, the diagnostic values and biological functions of circulating tsRNAs, especially for HCC, are still unknown. In this study, we first utilized RNA sequencing followed by quantitative reverse-transcription PCR to analyze tsRNA signatures in HCC serum. We identified tRF-Gln-TTG-006, which was remarkably upregulated in HCC serum (training cohort: 24 HCC patients vs. 24 healthy controls). In the validation stage, we found that tRF-Gln-TTG-006 signature could distinguish HCC cases from healthy subjects with high sensitivity (80.4%) and specificity (79.4%) even in the early stage (Stage I: sensitivity, 79.0%; specificity, 74.8%; 155 healthy controls vs. 153 HCC patients from two cohorts). Moreover, in vitro studies indicated that circulating tRF-Gln-TTG-006 was released from tumor cells, and its biological function was predicted by bioinformatics assay and validated by colony formation and apoptosis assays. In summary, our study demonstrated that serum tsRNA signature may serve as a novel biomarker of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209–249

    Article  PubMed  Google Scholar 

  2. Kim TH, Kim SY, Tang A, Lee JM. Comparison of international guidelines for noninvasive diagnosis of hepatocellular carcinoma: 2018 update. Clin Mol Hepatol 2019; 25(3): 245–263

    Article  PubMed  PubMed Central  Google Scholar 

  3. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, Lencioni R, Koike K, Zucman-Rossi J, Finn RS. Hepatocellular carcinoma. Nat Rev Dis Primers 2021; 7(1): 6

    Article  PubMed  Google Scholar 

  4. Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, Sun F, Lu J, Yin Y, Cai X, Sun Q, Wang K, Ba Y, Wang Q, Wang D, Yang J, Liu P, Xu T, Yan Q, Zhang J, Zen K, Zhang CY. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 2010; 39(1): 133–144

    Article  CAS  PubMed  Google Scholar 

  5. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008; 18(10): 997–1006

    Article  CAS  PubMed  Google Scholar 

  6. Wang Y, Liang H, Jin F, Yan X, Xu G, Hu H, Liang G, Zhan S, Hu X, Zhao Q, Liu Y, Jiang ZY, Zhang CY, Chen X, Zen K. Injured liver-released miRNA-122 elicits acute pulmonary inflammation via activating alveolar macrophage TLR7 signaling pathway. Proc Natl Acad Sci USA 2019; 116(13): 6162–6171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dawson SJ, Tsui DWY, Murtaza M, Biggs H, Rueda OM, Chin SF, Dunning MJ, Gale D, Forshew T, Mahler-Araujo B, Rajan S, Humphray S, Becq J, Halsall D, Wallis M, Bentley D, Caldas C, Rosenfeld N. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 2013; 368(13): 1199–1209

    Article  CAS  PubMed  Google Scholar 

  8. Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DW, Kaper F, Dawson SJ, Piskorz AM, Jimenez-Linan M, Bentley D, Hadfield J, May AP, Caldas C, Brenton JD, Rosenfeld N. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med 2012; 4(136): 136ra68

    Article  PubMed  CAS  Google Scholar 

  9. Cole C, Sobala A, Lu C, Thatcher SR, Bowman A, Brown JW, Green PJ, Barton GJ, Hutvagner G. Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 2009; 15(12): 2147–2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Peng H, Shi J, Zhang Y, Zhang H, Liao S, Li W, Lei L, Han C, Ning L, Cao Y, Zhou Q, Chen Q, Duan E. A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm. Cell Res 2012; 22(11): 1609–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jin F, Guo Z. Emerging role of a novel small non-coding regulatory RNA: tRNA-derived small RNA. ExRNA 2019; 1: 39

    Article  Google Scholar 

  12. Kumar P, Kuscu C, Dutta A. Biogenesis and function of transfer RNA-related fragments (tRFs). Trends Biochem Sci 2016; 41(8): 679–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ivanov P, Emara MM, Villen J, Gygi SP, Anderson P. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell 2011; 43(4): 613–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thompson DM, Parker R. The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J Cell Biol 2009; 185(1): 43–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Honda S, Loher P, Shigematsu M, Palazzo JP, Suzuki R, Imoto I, Rigoutsos I, Kirino Y. Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers. Proc Natl Acad Sci USA 2015; 112(29): E3816–E3825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maute RL, Schneider C, Sumazin P, Holmes A, Califano A, Basso K, Dalla-Favera R. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc Natl Acad Sci USA 2013; 110(4): 1404–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Balatti V, Pekarsky Y, Croce CM. Role of the tRNA-derived small RNAs in cancer: new potential biomarkers and target for therapy. Adv Cancer Res 2017; 135: 173–187

    Article  CAS  PubMed  Google Scholar 

  18. Pekarsky Y, Balatti V, Palamarchuk A, Rizzotto L, Veneziano D, Nigita G, Rassenti LZ, Pass HI, Kipps TJ, Liu CG, Croce CM. Dysregulation of a family of short noncoding RNAs, tsRNAs, in human cancer. Proc Natl Acad Sci USA 2016; 113(18): 5071–5076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Balatti V, Rizzotto L, Miller C, Palamarchuk A, Fadda P, Pandolfo R, Rassenti LZ, Hertlein E, Ruppert AS, Lozanski A, Lozanski G, Kipps TJ, Byrd JC, Croce CM, Pekarsky Y. TCL1 targeting miR-3676 is codeleted with tumor protein p53 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2015; 112(7): 2169–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jin F, Yang L, Wang W, Yuan N, Zhan S, Yang P, Chen X, Ma T, Wang Y. A novel class of tsRNA signatures as biomarkers for diagnosis and prognosis of pancreatic cancer. Mol Cancer 2021; 20: 95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goodarzi H, Liu X, Nguyen HCB, Zhang S, Fish L, Tavazoie SF. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell 2015; 161(4): 790–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Y, Zhang Y, Shi J, Zhang H, Cao Z, Gao X, Ren W, Ning Y, Ning L, Cao Y, Chen Y, Ji W, Chen ZJ, Chen Q, Duan E. Identification and characterization of an ancient class of small RNAs enriched in serum associating with active infection. J Mol Cell Biol 2014; 6(2): 172–174

    Article  PubMed  Google Scholar 

  23. Wang J, Ma G, Li M, Han X, Xu J, Liang M, Mao X, Chen X, Xia T, Liu X, Wang S. Plasma tRNA fragments derived from 5′ ends as novel diagnostic biomarkers for early-stage breast cancer. Mol Ther Nucleic Acids 2020; 21: 954–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gu X, Wang L, Coates PJ, Boldrup L, Fåhraeus R, Wilms T, Sgaramella N, Nylander K. Transfer-RNA-derived fragments are potential prognostic factors in patients with squamous cell carcinoma of the head and neck. Genes (Basel) 2020; 11(11): 1344

    Article  CAS  Google Scholar 

  25. Yu M, Liu Z, Liu Y, Zhou X, Sun F, Liu Y, Li L, Hua S, Zhao Y, Gao H, Zhu Z, Na M, Zhang Q, Yang R, Zhang J, Yao Y, Chen X. PTP1B markedly promotes breast cancer progression and is regulated by miR-193a-3p. FEBS J 2019; 286(6): 1136–1153

    Article  CAS  PubMed  Google Scholar 

  26. Krüger J, Rehmsmeier M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 2006; 34(Web Server issue): W451–454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 2011; 39(Web Server issue): W316–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hur K, Toiyama Y, Okugawa Y, Ide S, Imaoka H, Boland CR, Goel A. Circulating microRNA-203 predicts prognosis and metastasis in human colorectal cancer. Gut 2017; 66(4): 654–665

    Article  CAS  PubMed  Google Scholar 

  29. Yamada A, Horimatsu T, Okugawa Y, Nishida N, Honjo H, Ida H, Kou T, Kusaka T, Sasaki Y, Yagi M, Higurashi T, Yukawa N, Amanuma Y, Kikuchi O, Muto M, Ueno Y, Nakajima A, Chiba T, Boland CR, Goel A. Serum miR-21, miR-29a, and miR-125b are promising biomarkers for the early detection of colorectal neoplasia. Clin Cancer Res 2015; 21(18): 4234–4242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kuscu C, Kumar P, Kiran M, Su Z, Malik A, Dutta A. tRNA fragments (tRFs) guide Ago to regulate gene expression post-transcriptionally in a Dicer-independent manner. RNA 2018; 24(8): 1093–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pliatsika V, Loher P, Magee R, Telonis AG, Londin E, Shigematsu M, Kirino Y, Rigoutsos I. MINTbase v2.0: a comprehensive database for tRNA-derived fragments that includes nuclear and mitochondrial fragments from all The Cancer Genome Atlas projects. Nucleic Acids Res 2018; 46(D1): D152–D159

    Article  CAS  PubMed  Google Scholar 

  32. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA 2004; 10(10): 1507–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hynes RO. The extracellular matrix: not just pretty fibrils. Science 2009; 326(5957): 1216–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Seiki M. Membrane-type 1 matrix metalloproteinase: a key enzyme for tumor invasion. Cancer Lett 2003; 194(1): 1–11

    Article  CAS  PubMed  Google Scholar 

  35. Brandão-Costa RM, Helal-Neto E, Vieira AM, Barcellos-de-Souza P, Morgado-Diaz J, Barja-Fidalgo C. Extracellular matrix derived from high metastatic human breast cancer triggers epithelial-mesenchymal transition in epithelial breast cancer cells through αvβ3 integrin. Int J Mol Sci 2020; 21(8): 2995

    Article  CAS  Google Scholar 

  36. Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S, Westermann F, Speleman F, Vandesompele J, Weinberg RA. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 2010; 12(3): 247–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 2013; 14(2): 195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schmalhofer O, Brabletz S, Brabletz T. E-cadherin, β-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 2009; 28(1–2): 151–166

    Article  CAS  PubMed  Google Scholar 

  39. Ren D, Lin B, Zhang X, Peng Y, Ye Z, Ma Y, Liang Y, Cao L, Li X, Li R, Sun L, Liu Q, Wu J, Zhou K, Zeng J. Maintenance of cancer stemness by miR-196b-5p contributes to chemoresistance of colorectal cancer cells via activating STAT3 signaling pathway. Oncotarget 2017; 8(30): 49807–49823

    Article  PubMed  PubMed Central  Google Scholar 

  40. Calvisi DF, Ladu S, Gorden A, Farina M, Conner EA, Lee JS, Factor VM, Thorgeirsson SS. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 2006; 130(4): 1117–1128

    Article  CAS  PubMed  Google Scholar 

  41. Shuai K, Liu B. Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 2003; 3(11): 900–911

    Article  CAS  PubMed  Google Scholar 

  42. Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol 2019; 16(10): 589–604

    Article  PubMed  PubMed Central  Google Scholar 

  43. Trevisani F, D’Intino PE, Morselli-Labate AM, Mazzella G, Accogli E, Caraceni P, Domenicali M, De Notariis S, Roda E, Bernardi M. Serum alpha-fetoprotein for diagnosis of hepatocellular carcinoma in patients with chronic liver disease: influence of HBsAg and anti-HCV status. J Hepatol 2001; 34(4): 570–575

    Article  CAS  PubMed  Google Scholar 

  44. Colli A, Fraquelli M, Casazza G, Massironi S, Colucci A, Conte D, Duca P. Accuracy of ultrasonography, spiral CT, magnetic resonance, and alpha-fetoprotein in diagnosing hepatocellular carcinoma: a systematic review. Am J Gastroenterol 2006; 101(3): 513–523

    Article  CAS  PubMed  Google Scholar 

  45. Lok AS, Sterling RK, Everhart JE, Wright EC, Hoefs JC, Di Bisceglie AM, Morgan TR, Kim HY, Lee WM, Bonkovsky HL, Dienstag JL; HALT-C Trial Group. Des-γ-carboxy prothrombin and α-fetoprotein as biomarkers for the early detection of hepatocellular carcinoma. Gastroenterology 2010; 138(2): 493–502

    Article  CAS  PubMed  Google Scholar 

  46. Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 2014; 20(8): 460–469

    Article  CAS  PubMed  Google Scholar 

  47. Schwarzenbach H, Hoon DSB, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 2011; 11(6): 426–437

    Article  CAS  PubMed  Google Scholar 

  48. Giordano S, Columbano A. MicroRNAs: new tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma? Hepatology 2013; 57(2): 840–847

    Article  CAS  PubMed  Google Scholar 

  49. Fornari F, Ferracin M, Trerè D, Milazzo M, Marinelli S, Galassi M, Venerandi L, Pollutri D, Patrizi C, Borghi A, Foschi FG, Stefanini GF, Negrini M, Bolondi L, Gramantieri L. Circulating microRNAs, miR-939, miR-595, miR-519d and miR-494, identify cirrhotic patients with HCC. PLoS One 2015; 10(10): e0141448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Bhattacharya S, Steele R, Shrivastava S, Chakraborty S, Di Bisceglie AM, Ray RB. Serum miR-30e and miR-223 as novel noninvasive biomarkers for hepatocellular carcinoma. Am J Pathol 2016; 186(2): 242–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cai J, Chen L, Zhang Z, Zhang X, Lu X, Liu W, Shi G, Ge Y, Gao P, Yang Y, Ke A, Xiao L, Dong R, Zhu Y, Yang X, Wang J, Zhu T, Yang D, Huang X, Sui C, Qiu S, Shen F, Sun H, Zhou W, Zhou J, Nie J, Zeng C, Stroup EK, Zhang X, Chiu BCH, Lau WY, He C, Wang H, Zhang W, Fan J. Genome-wide mapping of 5-hydroxymethylcytosines in circulating cell-free DNA as a non-invasive approach for early detection of hepatocellular carcinoma. Gut 2019; 68(12): 2195–2205

    Article  CAS  PubMed  Google Scholar 

  52. Wen L, Li J, Guo H, Liu X, Zheng S, Zhang D, Zhu W, Qu J, Guo L, Du D, Jin X, Zhang Y, Gao Y, Shen J, Ge H, Tang F, Huang Y, Peng J. Genome-scale detection of hypermethylated CpG islands in circulating cell-free DNA of hepatocellular carcinoma patients. Cell Res 2015; 25(11): 1250–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shi J, Zhang Y, Zhou T, Chen Q. tsRNAs: the Swiss army knife for translational regulation. Trends Biochem Sci 2019; 44(3): 185–189

    Article  CAS  PubMed  Google Scholar 

  54. Lee YS, Shibata Y, Malhotra A, Dutta A. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 2009; 23(22): 2639–2649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thompson DM, Parker R. Stressing out over tRNA cleavage. Cell 2009; 138(2): 215–219

    Article  CAS  PubMed  Google Scholar 

  56. Fu H, Feng J, Liu Q, Sun F, Tie Y, Zhu J, Xing R, Sun Z, Zheng X. Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Lett 2009; 583(2): 437–442

    Article  CAS  PubMed  Google Scholar 

  57. Yin Y, Cai X, Chen X, Liang H, Zhang Y, Li J, Wang Z, Chen X, Zhang W, Yokoyama S, Wang C, Li L, Li L, Hou D, Dong L, Xu T, Hiroi T, Yang F, Ji H, Zhang J, Zen K, Zhang CY. Tumor-secreted miR-214 induces regulatory T cells: a major link between immune evasion and tumor growth. Cell Res 2014; 24(10): 1164–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, Betts MR, Freeman GJ, Vignali DAA, Wherry EJ. Coregulation of CD8 T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 2009; 10(1): 29–37

    Article  CAS  PubMed  Google Scholar 

  59. Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 2004; 172(2): 989–999

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Training Program of the Major Research Plan of the National Natural Science Foundation of China (No. 92049109), the National Natural Science Foundation of China (Nos. 32000549 and 82003024), the Natural Science Foundation of Jiangsu Province (No. BK2020041989), and the Natural Science Foundation of Nanjing University of Chinese Medicine (No. NZY82003024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liuqing Yang, Fangfang Jin or Yanbo Wang.

Additional information

Compliance with ethics guidelines

Shoubin Zhan, Ping Yang, Shengkai Zhou, Ye Xu, Rui Xu, Gaoli Liang, Chenyu Zhang, Xi Chen, Liuqing Yang, Fangfang Jin, and Yanbo Wang declare that they have no conflict of interest. All the procedure of this study was approved by the Medical Ethics Committee of the Affiliated Drum Tower Hospital of Nanjing University Medical School and the First People’s Hospital of Lianyungang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, S., Yang, P., Zhou, S. et al. Serum mitochondrial tsRNA serves as a novel biomarker for hepatocarcinoma diagnosis. Front. Med. 16, 216–226 (2022). https://doi.org/10.1007/s11684-022-0920-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-022-0920-7

Keywords

Navigation