Skip to main content

Advertisement

Log in

Longitudinal fMRI task reveals neural plasticity in default mode network with disrupted executive-default coupling and selective attention after traumatic brain injury

  • ORIGINAL RESEARCH
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Executive dysfunctions are common in individuals with Traumatic Brain Injury (TBI). However, change in functional neural coupling of default and executive networks in the post-acute phase (≥ 1 month after injury) patients over time has yet to be understood. During a 5-week observation period, we examined changes in the goal-oriented executive function networks in 20 TBI participants, using a face/scene matching 1-back fMRI task (Chen et al. 2011). We conducted multivariate pattern analysis to assess working memory and visual selective attention, followed by a repeat-measures ANOVA to examine longitudinal changes, with a cluster FDR at p = .001. Results showed that task accuracy significantly improved after follow-up. Significantly increased activity patterns over time were observed in the right dorsolateral prefrontal cortex and right insula. Decreased activity patterns were seen in the left posterior cingulate cortex (PCC), bilateral precuneus, right inferior occipital gyrus and right temporo-occipital junction. Improvement in task accuracy correlated with decreased activity patterns in the PCC (r = −0.478, p = 0.031) and temporo-occipital junction (r = −0.592, p = 0.006), which were interpreted as neural plastic changes. However, we did not observe the default mode network (DMN)-executive network decoupling during task performance that is found in other studies. These results suggest that fMRI of attentional task performance could serve as a potential biomarker for neural plasticity of selective attention in TBI patients in the post-acute phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams, J. H., Graham, D. I., Scott, G., Parker, L. S., & Doyle, D. (1980). Brain damage in fatal non-missile head injury. Journal of Clinical Pathology, 33, 1132–1145.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aerts, H., Fias, W., Caeyenberghs, K., & Marinazzo, D. (2016). Brain networks under attack: Robustness properties and the impact of lesions. Brain, 139, 3063–3083.

    PubMed  Google Scholar 

  • Astafiev, S. V., Shulman, G. L., Metcalf, N. V., Rengachary, J., MacDonald, C. L., Harrington, D. L., Maruta, J., Shimony, J. S., Ghajar, J., Diwakar, M., Huang, M. X., Lee, R. R., & Corbetta, M. (2015). Abnormal white matter blood-oxygen-level-dependent signals in chronic mild traumatic brain injury. Journal of Neurotrauma, 32, 1254–1271.

    PubMed  PubMed Central  Google Scholar 

  • Baldauf, D., & Desimone, R. (2014). Neural mechanisms of object-based attention. Science (New York, N.Y.), 344, 424–427.

    CAS  Google Scholar 

  • Beck, D. M., & Kastner, S. (2007). Stimulus similarity modulates competitive interactions in human visual cortex. Journal of Vision, 7, 19.1–19.1912.

  • Bonnelle, V., Ham, T. E., Leech, R., Kinnunen, K. M., Mehta, M. A., Greenwood, R. J., & Sharp, D. J. (2012). Salience network integrity predicts default mode network function after traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 109, 4690–4695.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnelle, V., Leech, R., Kinnunen, K. M., Ham, T. E., Beckmann, C. F., De Boissezon, X., Greenwood, R. J., & Sharp, D. J. (2011). Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. The Journal of neuroscience : the official journal of the Society for Neuroscience, 31, 13442–13451.

    CAS  Google Scholar 

  • Castellanos, N. P., Leyva, I., Buldu, J. M., Bajo, R., Paul, N., Cuesta, P., Ordonez, V. E., Pascua, C. L., Boccaletti, S., Maestu, F., & del-Pozo, F. (2011). Principles of recovery from traumatic brain injury: Reorganization of functional networks. Neuroimage, 55, 1189–1199.

    PubMed  Google Scholar 

  • Cerf, M., Thiruvengadam, N., Mormann, F., Kraskov, A., Quiroga, R. Q., Koch, C., & Fried, I. (2010). On-line, voluntary control of human temporal lobe neurons. Nature, 467, 1104–1108.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chadick, J. Z., & Gazzaley, A. (2011). Differential coupling of visual cortex with default or frontal-parietal network based on goals. Nature Neuroscience, 14, 830–832.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, A. J., Novakovic-Agopian, T., Nycum, T. J., Song, S., Turner, G. R., Hills, N. K., Rome, S., Abrams, G. M., & D'Esposito, M. (2011). Training of goal-directed attention regulation enhances control over neural processing for individuals with brain injury. Brain, 134, 1541–1554.

    PubMed  PubMed Central  Google Scholar 

  • Chen, H., Epstein, J., & Stern, E. (2010). Neural plasticity after acquired brain injury: Evidence from functional neuroimaging. PM & R : The Journal of Injury, Function, and Rehabilitation, 2, S306–S312.

    Google Scholar 

  • Cohen, E. H., & Tong, F. (2015). Neural mechanisms of object-based attention. Cerebral Cortex (New York, N.Y. : 1991), 25, 1080–1092.

    Google Scholar 

  • Couperus, J. W., & Mangun, G. R. (2010). Signal enhancement and suppression during visual-spatial selective attention. Brain Research, 1359, 155–177.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, Y., Liu, B., Luo, S., Zhen, X., Fan, M., Liu, T., Zhu, W., Park, M., Jiang, T., & Jin, J. S. (2011). Identification of conversion from mild cognitive impairment to Alzheimer's disease using multivariate predictors. PLoS One, 6, e21896.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dall’Acqua, P., Johannes, S., Mica, L., Simmen, H. P., Glaab, R., Fandino, J., Schwendinger, M., Meier, C., Ulbrich, E. J., Müller, A., Baetschmann, H., Jäncke, L., & Hänggi, J. (2017). Functional and structural network recovery after mild traumatic brain injury: A 1-year longitudinal study. Frontiers in Human Neuroscience, 11.

  • Desimone, R. (1998). Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 353, 1245–1255.

    CAS  Google Scholar 

  • Dikmen, S., Machamer, J., & Temkin, N. (2017). Mild traumatic brain injury: Longitudinal study of cognition, functional status, and post-traumatic symptoms. Journal of Neurotrauma, 34, 1524–1530.

    PubMed  PubMed Central  Google Scholar 

  • Edlow, B. L., Copen, W. A., Izzy, S., Bakhadirov, K., van der Kouwe, A., Glenn, M. B., Greenberg, S. M., Greer, D. M., & Wu, O. (2016). Diffusion tensor imaging in acute-to-subacute traumatic brain injury: A longitudinal analysis. BMC Neurology, 16, 2.

    PubMed  PubMed Central  Google Scholar 

  • Fonville, L., Cohen Kadosh, K., Drakesmith, M., Dutt, A., Zammit, S., Mollon, J., Reichenberg, A., Lewis, G., Jones, D. K., & David, A. S. (2015). Psychotic experiences, working memory, and the developing brain: A multimodal neuroimaging study. Cerebral cortex (New York, N.Y. : 1991), 25, 4828–4838.

    Google Scholar 

  • Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2006). Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences of the United States of America, 103, 10046–10051.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner, R. C., & Yaffe, K. (2015). Epidemiology of mild traumatic brain injury and neurodegenerative disease. Molecular and Cellular Neurosciences, 66, 75–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gazzaley, A., Cooney, J. W., McEvoy, K., Knight, R. T., & D'Esposito, M. (2005a). Top-down enhancement and suppression of the magnitude and speed of neural activity. Journal of Cognitive Neuroscience, 17, 507–517.

    PubMed  Google Scholar 

  • Gazzaley, A., Cooney, J. W., Rissman, J., & D'Esposito, M. (2005b). Top-down suppression deficit underlies working memory impairment in normal aging. Nature Neuroscience, 8, 1298–1300.

    CAS  PubMed  Google Scholar 

  • Han, K., Chapman, S. B., & Krawczyk, D. C. (2016). Disrupted intrinsic connectivity among default, dorsal attention, and Frontoparietal control networks in individuals with chronic traumatic brain injury. Journal of the International Neuropsychological Society : JINS, 22, 263–279.

    PubMed  Google Scholar 

  • Hayden, B. Y., & Gallant, J. L. (2013). Working memory and decision processes in visual area v4. Frontiers in Neuroscience, 7, 18.

    PubMed  PubMed Central  Google Scholar 

  • Haynes, J. D. (2015). A primer on pattern-based approaches to fMRI: Principles, pitfalls, and perspectives. Neuron, 87, 257–270.

    CAS  PubMed  Google Scholar 

  • Hebart, M. N., Gorgen, K., & Haynes, J. D. (2014). The decoding toolbox (TDT): A versatile software package for multivariate analyses of functional imaging data. Frontiers in Neuroinformatics, 8, 88.

    PubMed  Google Scholar 

  • Jilka, S. R., Scott, G., Ham, T., Pickering, A., Bonnelle, V., Braga, R. M., Leech, R., & Sharp, D. J. (2014). Damage to the salience network and interactions with the default mode network. The Journal of neuroscience : the official journal of the Society for Neuroscience, 34, 10798–10807.

    CAS  Google Scholar 

  • Kelly, A. M., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2008). Competition between functional brain networks mediates behavioral variability. Neuroimage, 39, 527–537.

    PubMed  Google Scholar 

  • Koolschijn, P. C., Schel, M. A., de Rooij, M., Rombouts, S. A., & Crone, E. A. (2011). A three-year longitudinal functional magnetic resonance imaging study of performance monitoring and test-retest reliability from childhood to early adulthood. The Journal of neuroscience : the official journal of the Society for Neuroscience, 31, 4204–4212.

    CAS  Google Scholar 

  • Kou, Z., & Iraji, A. (2014). Imaging brain plasticity after trauma. Neural Regeneration Research, 9, 693–700.

    PubMed  PubMed Central  Google Scholar 

  • Lee, T. G., & D'Esposito, M. (2012). The dynamic nature of top-down signals originating from prefrontal cortex: A combined fMRI-TMS study. The Journal of neuroscience : the official journal of the Society for Neuroscience, 32, 15458–15466.

    CAS  Google Scholar 

  • Leech, R., & Sharp, D. J. (2014). The role of the posterior cingulate cortex in cognition and disease. Brain, 137, 12–32.

    PubMed  Google Scholar 

  • Levine, B., Robertson, I. H., Clare, L., Carter, G., Hong, J., Wilson, B. A., Duncan, J., & Stuss, D. T. (2000). Rehabilitation of executive functioning: An experimental-clinical validation of goal management training. Journal of the International Neuropsychological Society : JINS, 6, 299–312.

    CAS  PubMed  Google Scholar 

  • Liang, X., Zou, Q., He, Y., & Yang, Y. (2016). Topologically reorganized connectivity architecture of default-mode, executive-control, and salience networks across working memory task loads. Cerebral cortex (New York, N.Y. : 1991), 26, 1501–1511.

    Google Scholar 

  • Lin, J. W., Lin, C. M., Tsai, J. T., Hung, K. S., Hung, C. C., & Chiu, W. T. (2008). Neurotrauma research in Taiwan. Acta Neurochirurgica. Supplement, 101, 113–117.

    CAS  PubMed  Google Scholar 

  • Maruishi, M., Miyatani, M., Nakao, T., & Muranaka, H. (2007). Compensatory cortical activation during performance of an attention task by patients with diffuse axonal injury: A functional magnetic resonance imaging study. Journal of Neurology, Neurosurgery, and Psychiatry, 78, 168–173.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mattfeld, A. T., Whitfield-Gabrieli, S., Biederman, J., Spencer, T., Brown, A., Fried, R., & Gabrieli, J. D. (2016). Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain. Neuro Image Clinical, 10, 274–282.

    Google Scholar 

  • Mayer, A. R., Mannell, M. V., Ling, J., Gasparovic, C., & Yeo, R. A. (2011). Functional connectivity in mild traumatic brain injury. Human Brain Mapping, 32, 1825–1835.

    PubMed  PubMed Central  Google Scholar 

  • Miller, B. T., Vytlacil, J., Fegen, D., Pradhan, S., & D'Esposito, M. (2011). The prefrontal cortex modulates category selectivity in human extrastriate cortex. Journal of Cognitive Neuroscience, 23, 1–10.

    PubMed  Google Scholar 

  • Mott, T. F., McConnon, M. L., & Rieger, B. P. (2012). Subacute to chronic mild traumatic brain injury. American Family Physician, 86, 1045–1051.

    PubMed  Google Scholar 

  • Nguyen, R., Fiest, K. M., McChesney, J., Kwon, C. S., Jette, N., Frolkis, A. D., Atta, C., Mah, S., Dhaliwal, H., Reid, A., Pringsheim, T., Dykeman, J., & Gallagher, C. (2016). The international incidence of traumatic brain injury: A systematic review and meta-analysis. The Canadian Journal of Neurological Sciences. Le journal canadien des sciences neurologiques, 43, 774–785.

    PubMed  Google Scholar 

  • Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25, 46–59.

    PubMed  PubMed Central  Google Scholar 

  • Peters, J. C., Roelfsema, P. R., & Goebel, R. (2012). Task-relevant and accessory items in working memory have opposite effects on activity in extrastriate cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience, 32, 17003–17011.

    CAS  Google Scholar 

  • Reddy, L., Kanwisher, N. G., & VanRullen, R. (2009). Attention and biased competition in multi-voxel object representations. Proceedings of the National Academy of Sciences of the United States of America, 106, 21447–21452.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Carrion, R., Fernandez-Espejo, D., Junque, C., Falcon, C., Bargallo, N., Roig, T., Bernabeu, M., Tormos, J. M., & Vendrell, P. (2008). A longitudinal fMRI study of working memory in severe TBI patients with diffuse axonal injury. Neuroimage, 43, 421–429.

    PubMed  Google Scholar 

  • Seiss, E., Driver, J., & Eimer, M. (2009). Effects of attentional filtering demands on preparatory ERPs elicited in a spatial cueing task. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology, 120, 1087–1095.

    Google Scholar 

  • Shi, H. Y., Hwang, S. L., Lee, I. C., Chen, I. T., Lee, K. T., & Lin, C. L. (2014). Trends and outcome predictors after traumatic brain injury surgery: A nationwide population-based study in Taiwan. Journal of Neurosurgery, 121, 1323–1330.

    PubMed  Google Scholar 

  • Sidaros, A., Engberg, A. W., Sidaros, K., Liptrot, M. G., Herning, M., Petersen, P., Paulson, O. B., Jernigan, T. L., & Rostrup, E. (2008). Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: A longitudinal study. Brain, 131, 559–572.

    PubMed  Google Scholar 

  • Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the United States of America, 105, 12569–12574.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strangman, G. E., O'Neil-Pirozzi, T. M., Goldstein, R., Kelkar, K., Katz, D. I., Burke, D., Rauch, S. L., Savage, C. R., & Glenn, M. B. (2008). Prediction of memory rehabilitation outcomes in traumatic brain injury by using functional magnetic resonance imaging. Archives of Physical Medicine and Rehabilitation, 89, 974–981.

    PubMed  Google Scholar 

  • Strappini, F., Galati, G., Martelli, M., Di Pace, E., & Pitzalis, S. (2017). Perceptual integration and attention in human extrastriate cortex. Scientific Reports, 7, 14848.

    PubMed  PubMed Central  Google Scholar 

  • van der Horn, H. J., Liemburg, E. J., Scheenen, M. E., de Koning, M. E., Spikman, J. M., & van der Naalt, J. (2016). Post-concussive complaints after mild traumatic brain injury associated with altered brain networks during working memory performance. Brain Imaging and Behavior, 10, 1243–1253.

    PubMed  Google Scholar 

  • Weissman, D. H., Roberts, K. C., Visscher, K. M., & Woldorff, M. G. (2006). The neural bases of momentary lapses in attention. Nature Neuroscience, 9, 971–978.

    CAS  PubMed  Google Scholar 

  • Woo, C. W., Chang, L. J., Lindquist, M. A., & Wager, T. D. (2017). Building better biomarkers: Brain models in translational neuroimaging. Nature Neuroscience, 20, 365–377.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, J. H., Curtis, C. E., & D'Esposito, M. (2006). Differential effects of distraction during working memory on delay-period activity in the prefrontal cortex and the visual association cortex. Neuroimage, 29, 1117–1126.

    PubMed  Google Scholar 

  • Zanto, T. P., Pa, J., & Gazzaley, A. (2014). Reliability measures of functional magnetic resonance imaging in a longitudinal evaluation of mild cognitive impairment. Neuroimage, 84, 443–452.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the participating patients and a number of individuals who made this study possible, in particular: Anthony J.-W. Chen, MD for sharing the task design; Thorsten Kahnt, PhD for MVPA guidance; Amy Anne Herrold, PhD and James L Reilly, PhD for TBI consultation.

Funding

This work was supported by a grant from the Taiwan Ministry of Science and Technology (NSC 103–2420-H-007-004-MY2) to Fan-pei Gloria Yang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan-pei Gloria Yang.

Ethics declarations

Conflict of interests

There is no conflict of interests in our research.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Disclosures

The task paradigm employed in this study has proved test–retest effects for TBI patients (Chen et al. 2011). In addition, in previous longitudinal studies with N-back tests, task-based fMRI showed robust test-retest effects (Koolschijn et al. 2011; Zanto et al. 2014) and no significant change (Fonville et al. 2015; Mattfeld et al. 2016; Sanchez-Carrion et al. 2008) in healthy adults.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, SC.J., Jenkins, L.M., Apple, A.C. et al. Longitudinal fMRI task reveals neural plasticity in default mode network with disrupted executive-default coupling and selective attention after traumatic brain injury. Brain Imaging and Behavior 14, 1638–1650 (2020). https://doi.org/10.1007/s11682-019-00094-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-019-00094-8

Keywords

Navigation