Skip to main content

Advertisement

Log in

Meta-analysis of the moral brain: patterns of neural engagement assessed using multilevel kernel density analysis

  • ORIGINAL RESEARCH
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The neuroimaging literature in moral cognition has rapidly developed in the last decade with more than 200 publications on the topic. Neuroimaging based models generally agree that limbic regions work with medial prefrontal and temporal regions during moral processing to integrate emotional, social, and cognitive elements into decision-making. However, no quantitative work has been done examining neural response across types of moral cognition tasks. This paper uses Multilevel Kernel Density Analysis (MKDA) to conduct neuroimaging meta-analyses of the moral cognitive literature. MKDA replicated previous findings of the neural correlates of moral cognition: the left amygdala, medial prefrontal cortex, bilateral temporoparietal junction, and posterior cingulate. Random forest algorithms classified neural features as belonging to simple/utilitarian moral dilemmas, explicit/implicit moral tasks, and word/picture moral stimuli tasks; in combination with univariate contrast analyses, these results indicated a distinct pattern of processing for each of the members of these paradigm pairs. Overall, the results emphasize that the task selected for use in a moral cognition neuroimaging study is vital for the elicitation and interpretation of results. It also replicates and re-establishes the neural basis for moral processing, especially important in light of implementation errors in previous meta-analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Moral emotions typically include shame and guilt, and positive emotions like gratitude. Although theory and literature support emotional processes as constituting an element of moral processing, the coordination between those and cognitive/social systems are an essential part of moral cognition that is not captured by tasks of component parts only (e.g., facial emotion processing, working memory, economic decision making). We have chosen to treat moral emotions in the absence of specific moral cognitive tasks as a separate (albeit related) construct, much like theory of mind and empathy processes. In previous meta-analysis, those (TOM and empathy) corresponded to engagement that was both distinct and overlapping with regions of the brain found associated with moral cognition (Bzdok et al. 2012), suggesting the need to treat such constructs separately.

  2. All foci are converted to MNI within the analysis.

  3. It is important to note that many of the reviews comparing ALE and MDKA and finding significant differences therein discuss the pre-2009 ALE (i.e., Kober and Wager 2010); the revisions to the algorithms by Eickhoff largely address the concerns of these reviews and as a result, both techniques are considered similarly useful in conducting imaging meta-analyses (Nichols, Neuroimaging Meta-Analysis Educational Session, OHBM 2015).

References

  • Baez, S., Couto, B., Torralva, T., Sposato, L. A., Huepe, D., Montanes, P., et al. (2014). Comparing moral judgments of patients with frontotemporal dementia and frontal stroke. JAMA Neurology, 71(9), 1172–1176. https://doi.org/10.1001/jamaneurol.2014.347.

    Article  PubMed  Google Scholar 

  • Bezalel, V., Paz, R., & Tal, A. (2019). Inhibitory and excitatory mechanisms in the human cingulate-cortex support reinforcement learning: A functional proton magnetic resonance spectroscopy study. NeuroImage, 184, 25–35. https://doi.org/10.1016/j.neuroimage.2018.09.016.

    Article  CAS  PubMed  Google Scholar 

  • Braver, T. S., & Bongiolatti, S. R. (2002). The role of frontopolar cortex in subgoal processing during working memory. NeuroImage, 15(3), 523–536.

    Article  Google Scholar 

  • Bush, G., Vogt, B. A., Holmes, J., Dale, A. M., Greve, D., Jenike, M. A., & Rosen, B. R. (2002). Dorsal anterior cingulate cortex: A role in reward-based decision making. Proceedings of the National Academy of Sciences, 99(1), 523–528. https://doi.org/10.1073/pnas.012470999.

    Article  CAS  Google Scholar 

  • Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafò, M. R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365–376.

    Article  CAS  Google Scholar 

  • Bzdok, D., Schilbach, L., Vogeley, K., Schneider, K., Laird, A. R., Langner, R., & Eickhoff, S. B. (2012). Parsing the neural correlates of moral cognition: ALE meta-analysis on morality, theory of mind, and empathy. Brain Structure and Function, 217(4), 783–796.

    Article  Google Scholar 

  • Bzdok, D., Groß, D., & Eickhoff, S. B. (2015). The neurobiology of moral cognition: Relation to theory of mind, empathy, and mind-wandering Handbook of Neuroethics (pp. 127–148). Berlin: Springer.

    Google Scholar 

  • Caldwell, B. M., Harenski, C. L., Harenski, K. A., Fede, S. J., Steele, V. R., Koenigs, M. R., & Kiehl, K. A. (2015). Abnormal frontostriatal activity in recently abstinent cocaine users during implicit moral processing. Frontiers in Human Neuroscience, 9, 565.

    Article  Google Scholar 

  • Chang, L. J., Yarkoni, T., Khaw, M. W., & Sanfey, A. G. (2012). Decoding the role of the insula in human cognition: Functional Parcellation and large-scale reverse inference. Cerebral Cortex, 23, 739–749. https://doi.org/10.1093/cercor/bhs065.

    Article  PubMed  Google Scholar 

  • Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357.

    Article  Google Scholar 

  • Chee, M. W., Weekes, B., Lee, K. M., Soon, C. S., Schreiber, A., Hoon, J. J., & Chee, M. (2000). Overlap and dissociation of semantic processing of Chinese characters, English words, and pictures: Evidence from fMRI. NeuroImage, 12(4), 392–403.

    Article  CAS  Google Scholar 

  • Christoff, K., & Gabrieli, J. D. (2000). The frontopolar cortex and human cognition: Evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex. Psychobiology, 28(2), 168–186.

    Google Scholar 

  • Ciaramelli, E., Muccioli, M., Ladavas, E., & di Pellegrino, G. (2007). Selective deficit in personal moral judgment following damage to ventromedial prefrontal cortex. Social Cognitive and Affective Neuroscience, 2(2), 84–92. https://doi.org/10.1093/scan/nsm001.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Oliveira-Souza, R., & Moll, J. (2009). The neural bases of normal and deviant moral cognition and behavior. Topics in Magnetic Resonance Imaging, 20(5), 261–270. https://doi.org/10.1097/RMR.0b013e3181f22f69.

    Article  PubMed  Google Scholar 

  • Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 2907–2926.

    Article  Google Scholar 

  • Eickhoff, S. B., Laird, A. R., Fox, P. M., Lancaster, J. L., & Fox, P. T. (2017). Implementation errors in the GingerALE software: Description and recommendations. Human Brain Mapping, 38(1), 7–11. https://doi.org/10.1002/hbm.23342.

    Article  PubMed  Google Scholar 

  • Fede, S. J., Borg, J. S., Nyalakanti, P. K., Harenski, C. L., Cope, L. M., Sinnott-Armstrong, W., Koenigs, M., Calhoun, V.D., & Kiehl, K.A. (2016). Distinct neuronal patterns of positive and negative moral processing in psychopathy. Cognitive, Affective, & Behavioral Neuroscience, 16(6), 1074–1085. https://doi.org/10.3758/s13415-016-0454-z

  • Feldmanhall, O., Mobbs, D., & Dalgleish, T. (2014). Deconstructing the brain's moral network: Dissociable functionality between the temporoparietal junction and ventro-medial prefrontal cortex. Social Cognitive and Affective Neuroscience, 9(3), 297–306. https://doi.org/10.1093/scan/nss139.

    Article  PubMed  Google Scholar 

  • Feng, C. L., Yan, X. Y., Huang, W. H., Han, S. H., & Ma, Y. N. (2018). Neural representations of the multidimensional self in the cortical midline structures. NeuroImage, 183, 291–299. https://doi.org/10.1016/j.neuroimage.2018.08.018.

    Article  PubMed  Google Scholar 

  • Finger, E. C., Marsh, A. A., Kamel, N., Mitchell, D. G., & Blair, J. R. (2006). Caught in the act: The impact of audience on the neural response to morally and socially inappropriate behavior. NeuroImage, 33(1), 414–421. https://doi.org/10.1016/j.neuroimage.2006.06.011.

    Article  PubMed  Google Scholar 

  • Glenn, A. L., Raine, A., Schug, R. A., Young, L., & Hauser, M. (2009). Increased DLPFC activity during moral decision-making in psychopathy. Molecular Psychiatry, 14(10), 909–911. https://doi.org/10.1038/Mp.2009.76.

    Article  Google Scholar 

  • Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M., & Cohen, J. D. (2001). An fMRI investigation of emotional engagement in moral judgment. Science, 293(5537), 2105–2108. https://doi.org/10.1126/science.1062872.

    Article  CAS  PubMed  Google Scholar 

  • Harenski, C. L., Antonenko, O., Shane, M. S., & Kiehl, K. A. (2008). Gender differences in neural mechanisms underlying moral sensitivity. Social Cognitive and Affective Neuroscience, 3(4), 313–321. https://doi.org/10.1093/scan/nsn026.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harenski, C. L., Harenski, K. A., Shane, M. S., & Kiehl, K. A. (2010). Aberrant neural processing of moral violations in criminal psychopaths. Journal of Abnormal Psychology, 119(4), 863–874. https://doi.org/10.1037/a0020979

  • Hiraishi, H., Hashimoto, T., Mori, K., Ito, H., & Harada, M. (2007). A preliminary fMRI study of moral judgment task in high functioning autistic children. No to Hattatsu, 39(5), 360–365.

    PubMed  Google Scholar 

  • Johnson, M. K., Raye, C. L., Mitchell, K. J., Touryan, S. R., Greene, E. J., & Nolen-Hoeksema, S. (2006). Dissociating medial frontal and posterior cingulate activity during self-reflection. Social Cognitive and Affective Neuroscience, 1(1), 56–64. https://doi.org/10.1093/scan/nsl004.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kahane, G., Wiech, K., Shackel, N., Farias, M., Savulescu, J., & Tracey, I. (2012). The neural basis of intuitive and counterintuitive moral judgment. Social Cognitive and Affective Neuroscience, 7(4), 393–402. https://doi.org/10.1093/scan/nsr005.

    Article  PubMed  Google Scholar 

  • Kerr, K. F. (2009). Comments on the analysis of unbalanced microarray data. Bioinformatics, 25(16), 2035–2041.

    Article  CAS  Google Scholar 

  • Kiehl, K. A. (2006). A cognitive neuroscience perspective on psychopathy: Evidence for paralimbic system dysfunction. Psychiatry Research, 142(2–3), 107–128. https://doi.org/10.1016/j.psychres.2005.09.013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kober, H., & Wager, T. D. (2010). Meta-analysis of neuroimaging data. Wiley Interdisciplinary Reviews: Cognitive Science, 1(2), 293–300.

  • Koenigs, M., Young, L., Adolphs, R., Tranel, D., Cushman, F., Hauser, M., & Damasio, A. (2007). Damage to the prefrontal cortex increases utilitarian moral judgements. Nature, 446(7138), 908–911. https://doi.org/10.1038/Nature05631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koster-Hale, J., Saxe, R., Dungan, J., & Young, L. L. (2013). Decoding moral judgments from neural representations of intentions. Proceedings of the National Academy of Sciences of the United States of America, 110(14), 5648–5653. https://doi.org/10.1073/pnas.1207992110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn, M. (2017). caret: Classification and Regression Training (Version 6.0–77). Retrieved from https://CRAN.R-project.org/package=caret

  • Lin, L. C., Qu, Y., & Telzer, E. H. (2018). Intergroup social influence on emotion processing in the brain. Proceedings of the National Academy of Sciences of the United States of America, 115(42), 10630–10635. https://doi.org/10.1073/pnas.1802111115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisofsky, N., Kazzer, P., Heekeren, H. R., & Prehn, K. (2014). Investigating socio-cognitive processes in deception: A quantitative meta-analysis of neuroimaging studies. Neuropsychologia, 61, 113–122. https://doi.org/10.1016/j.neuropsychologia.2014.06.001.

    Article  PubMed  Google Scholar 

  • Miller, M. B., Sinnott-Armstrong, W., Young, L., King, D., Paggi, A., Fabri, M., et al. (2010). Abnormal moral reasoning in complete and partial callosotomy patients. Neuropsychologia, 48(7), 2215–2220. https://doi.org/10.1016/j.neuropsychologia.2010.02.021.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moll, J., de Oliveira-Souza, R., Eslinger, P. J., Bramati, I. E., Mourao-Miranda, J., Andreiuolo, P. A., & Pessoa, L. (2002). The neural correlates of moral sensitivity: a functional magnetic resonance imaging investigation of basic and moral emotions. Journal of Neuroscience, 22(7), 2730–2736.

  • Moll, J., Zahn, R., de Oliveira-Souza, R., Krueger, F., & Grafman, J. (2005). The neural basis of human moral cognition. Nature Reviews Neuroscience, 6(10), 799–809.

    Article  CAS  Google Scholar 

  • Murray, E. A., Moylan, E. J., Saleem, K. S., Basile, B. M., & Turchi, J. (2015). Specialized areas for value updating and goal selection in the primate orbitofrontal cortex. Elife, 4. https://doi.org/10.7554/eLife.11695.

  • Nakao, T., Ohira, H., & Northoff, G. (2012). Distinction between externally vs. internally guided decision-making: Operational differences, meta-analytical comparisons and their theoretical implications. Frontiers in Neuroscience, 6. https://doi.org/10.3389/fnins.2012.00031.

  • Papageorgiou, G. K., Sallet, J., Wittmann, M. K., Chau, B. K., Schüffelgen, U., Buckley, M. J., & Rushworth, M. F. (2017). Inverted activity patterns in ventromedial prefrontal cortex during value-guided decision-making in a less-is-more task. Nature Communications, 8(1), 1886.

    Article  Google Scholar 

  • Parkinson, C., Sinnott-Armstrong, W., Koralus, P. E., Mendelovici, A., McGeer, V., & Wheatley, T. (2011). Is morality unified? Evidence that distinct neural systems underlie moral judgments of harm, dishonesty, and disgust. Journal of Cognitive Neuroscience, 23(10), 3162–3180. https://doi.org/10.1162/jocn_a_00017.

    Article  PubMed  Google Scholar 

  • Perner, J., Aichhorn, M., Kronbichler, M., Staffen, W., & Ladurner, G. (2006). Thinking of mental and other representations: The roles of left and right temporo-parietal junction. Social Neuroscience, 1(3–4), 245–258.

    Article  Google Scholar 

  • Poldrack, R. A., Baker, C. I., Durnez, J., Gorgolewski, K. J., Matthews, P. M., Munafò, M. R., et al. (2017). Scanning the horizon: Towards transparent and reproducible neuroimaging research. Nature Reviews Neuroscience, 18(2), 115–126.

    Article  CAS  Google Scholar 

  • Prehn, K., Wartenburger, I., Meriau, K., Scheibe, C., Goodenough, O. R., Villringer, A., et al. (2008). Individual differences in moral judgment competence influence neural correlates of socio-normative judgments. Social Cognitive and Affective Neuroscience, 3(1), 33–46. https://doi.org/10.1093/scan/nsm037.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salimi-Khorshidi, G., Smith, S. M., Keltner, J. R., Wager, T. D., & Nichols, T. E. (2009). Meta-analysis of neuroimaging data: A comparison of image-based and coordinate-based pooling of studies. NeuroImage, 45(3), 810–823.

    Article  Google Scholar 

  • Schaich Borg, J., Hynes, C., Van Horn, J., Grafton, S., & Sinnott-Armstrong, W. (2006). Consequences, action, and intention as factors in moral judgments: An FMRI investigation. Journal of Cognitive Neuroscience, 18(5), 803–817. https://doi.org/10.1162/jocn.2006.18.5.803.

    Article  PubMed  Google Scholar 

  • Scheuerecker, J., Frodl, T., Koutsouleris, N., Zetzsche, T., Wiesmann, M., Kleemann, A., et al. (2007). Cerebral differences in explicit and implicit emotional processing–an fMRI study. Neuropsychobiology, 56(1), 32–39.

    Article  CAS  Google Scholar 

  • Schneider, K., Pauly, K. D., Gossen, A., Mevissen, L., Michel, T. M., Gur, R. C., et al. (2012). Neural correlates of moral reasoning in autism spectrum disorder. Social Cognitive and Affective Neuroscience, 8(6), 702-710. https://doi.org/10.1093/scan/nss051

  • Shenhav, A., & Greene, J. D. (2010). Moral judgments recruit domain-general valuation mechanisms to integrate representations of probability and magnitude. Neuron, 67(4), 667–677. https://doi.org/10.1016/j.neuron.2010.07.020.

    Article  CAS  PubMed  Google Scholar 

  • Shenhav, A., & Greene, J. D. (2014). Integrative moral judgment: Dissociating the roles of the amygdala and ventromedial prefrontal cortex. Journal of Neuroscience, 34(13), 4741–4749. https://doi.org/10.1523/jneurosci.3390-13.2014.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, H., Kato, M., Matsuura, M., Koeda, M., Yahata, N., Suhara, T., & Okubo, Y. (2008). Neural correlates of human virtue judgment. Cerebral Cortex, 18(8), 1886–1891. https://doi.org/10.1093/cercor/bhm214

  • Tangney, J. P., Stuewig, J., & Mashek, D. J. (2007). Moral emotions and moral behavior. Annual Review of Psychology, 58, 345–372. https://doi.org/10.1146/annurev.psych.56.091103.070145.

    Article  PubMed  PubMed Central  Google Scholar 

  • Timmers, I., Park, A. L., Fischer, M. D., Kronman, C. A., Heathcote, L. C., Hernandez, J. M., & Simons, L. E. (2018). Is empathy for pain unique in its neural correlates? A meta-analysis of neuroimaging studies of empathy. Frontiers in Behavioral Neuroscience, 12. https://doi.org/10.3389/fnbeh.2018.00289.

  • Torgo, L. (2016). Data mining with R: Learning with case studies. Boca Raton: Chapman and Hall/CRC.

    Google Scholar 

  • van Elk, M., Duizer, M., Sligte, I., & van Schie, H. (2017). Transcranial direct current stimulation of the right temporoparietal junction impairs third-person perspective taking. Cognitive, Affective, & Behavioral Neuroscience, 17(1), 9–23. https://doi.org/10.3758/s13415-016-0462-z.

    Article  Google Scholar 

  • Verdejo-Garcia, A., Contreras-Rodríguez, O., Fonseca, F., Cuenca, A., Soriano-Mas, C., Rodriguez, J., et al. (2014). Functional alteration in frontolimbic systems relevant to moral judgment in cocaine-dependent subjects. Addiction Biology, 19(2), 272–281. https://doi.org/10.1111/j.1369-1600.2012.00472.x.

    Article  PubMed  Google Scholar 

  • Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: A meta-analysis. Cognitive, Affective, & Behavioral Neuroscience, 3(4), 255–274. https://doi.org/10.3758/cabn.3.4.255.

    Article  Google Scholar 

  • Wager, T. D., Lindquist, M., & Kaplan, L. (2007). Meta-analysis of functional neuroimaging data: Current and future directions. Social Cognitive and Affective Neuroscience, 2(2), 150–158.

    Article  Google Scholar 

  • Wager, T. D., Lindquist, M. A., Nichols, T. E., Kober, H., & Van Snellenberg, J. X. (2009). Evaluating the consistency and specificity of neuroimaging data using meta-analysis. NeuroImage, 45(1), S210–S221.

    Article  Google Scholar 

  • Wang, H.-T., Poerio, G., Murphy, C., Bzdok, D., Jefferies, E., & Smallwood, J. (2017). Dimensions of experience: Exploring the heterogeneity of the wandering mind. Psychological Science. https://doi.org/10.1177/0956797617728727.

  • Wellcome Department of Cognitive Neurology. (2005). SPM 5. London, UK. Retrieved from http://www.fil.ion.ucl.ac.uk/spm

  • Wurm, M. F., & Schubotz, R. I. (2018). The role of the temporoparietal junction (TPJ) in action observation: Agent detection rather than visuospatial transformation. NeuroImage, 165, 48–55.

    Article  Google Scholar 

  • Young, L., & Saxe, R. (2009). An FMRI investigation of spontaneous mental state inference for moral judgment. Journal of Cognitive Neuroscience, 21(7), 1396–1405. https://doi.org/10.1162/jocn.2009.21137.

    Article  PubMed  Google Scholar 

  • Young, L., Cushman, F., Hauser, M., & Saxe, R. (2007). The neural basis of the interaction between theory of mind and moral judgment. Proceedings of the National Academy of Sciences, 104(20), 8235–8240.

    Article  CAS  Google Scholar 

  • Young, L., Camprodon, J. A., Hauser, M., Pascual-Leone, A., & Saxe, R. (2010). Disruption of the right temporoparietal junction with transcranial magnetic stimulation reduces the role of beliefs in moral judgments. Proceedings of the National Academy of Sciences of the United States of America, 107(15), 6753–6758. https://doi.org/10.1073/pnas.0914826107.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zahn, R., Moll, J., Krueger, F., Huey, E. D., Garrido, G., & Grafman, J. (2007). Social concepts are represented in the superior anterior temporal cortex. Proceedings of the National Academy of Sciences, 104(15), 6430–6435. https://doi.org/10.1073/pnas.0607061104.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Drs. Carla Harenski, Jim Cavanaugh, Vince Clark, and Vince Calhoun provided feedback on the direction of this project and the early version of this manuscript. Portions of these results were presented at the 2016 Society for Neuroscience annual meeting.

Funding

The authors of this manuscript are partially supported by NIH research funding, although the work done here was not directly grant supported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samantha J. Fede.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

This research did not involve humans or animals.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 28.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fede, S.J., Kiehl, K.A. Meta-analysis of the moral brain: patterns of neural engagement assessed using multilevel kernel density analysis. Brain Imaging and Behavior 14, 534–547 (2020). https://doi.org/10.1007/s11682-019-00035-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-019-00035-5

Keywords

Navigation