Skip to main content
Log in

Openness to experience and psychophysiological interaction patterns during divergent thinking

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Creativity is the ability to produce something novel and useful. Various tasks have been used to explore the neural bases of creativity. However, studies exploring the relationship between the brain regions during divergent thinking are still rare. Given that the brain works in networks, exploring the functional connectivity (FC) patterns during divergent thinking is important. The present study explored the FC patterns during alternative uses task and its relationship with openness to experience. Psychophysiological interaction results corroborated that the inferior parietal lobule was positively connected to the precuneus and middle temporal gyrus. Middle frontal gyrus/superior frontal gyrus was positively connected to the precuneus and supramarginal gyrus. Individual difference analysis revealed that openness to experience was positively related to the strength of FCs between some key regions of default mode, cognitive control and salience networks. Findings confirmed the network-based mechanisms underlying creativity and the neural basis of individual differences of openness to experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abraham, A. (2014). Creative thinking as orchestrated by semantic processing vs. cognitive controlbrain networks. Frontiers in Human Neuroscience, 8, 95.

  • Abraham, A., Pieritz, K., Thybusch, K., Rutter, B., Kroger, S., Schweckendiek, J., Stark, R., Windmann, S., & Hermann, C. (2012). Creativity and the brain: uncovering the neural signature of conceptual expansion. Neuropsychologia, 50(8), 1906–1917.

    PubMed  Google Scholar 

  • Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: A meta-analytic review. Neuropsychology Review, 16(1), 17–42.

    PubMed  Google Scholar 

  • Aron, A. R. (2007). The neural basis of inhibition in cognitive control. The Neuroscientist, 13(3), 214–228.

    PubMed  Google Scholar 

  • Aziz-Zadeh, L., Liew, S. L., & Dandekar, F. (2013). Exploring the neural correlates of visual creativity. Social Cognitive and Affective Neuroscience, 8(4), 475–480.

    PubMed  Google Scholar 

  • Batey, M., & Furnham, A. (2006). Creativity, intelligence, and personality: a critical review of the scattered literature. Genetic, Social, and General Psychology Monographs, 132(4), 355–429.

    PubMed  Google Scholar 

  • Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., Hodges, D. A., Koschutnig, K., & Neubauer, A. C. (2014). Creativity and the default network: a functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 92–98.

    PubMed  PubMed Central  Google Scholar 

  • Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016a). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20(2), 87–95.

    PubMed  Google Scholar 

  • Beaty, R. E., Kaufman, S. B., Benedek, M., Jung, R. E., Kenett, Y. N., Jauk, E., Neubauer, A. C., & Silvia, P. J. (2016b). Personality and complex brain networks: the role of openness to experience in default network efficiency. Human Brain Mapping, 37(2), 773–779.

    PubMed  Google Scholar 

  • Beaty, R. E., Kenett, Y. N., Christensen, A. P., Rosenberg, M. D., Benedek, M., Chen, Q., Fink, A., Qiu, J., Kwapil, T. R., Kane, M. J., & Silvia, P. J. (2018). Robust prediction of individual creative ability from brain functional connectivity. Proceedings of the National Academy of Sciences of the United States of America, 115(5), 1087–1092.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berkowitz, A. L., & Ansari, D. (2008). Generation of novel motor sequences: the neural correlates of musical improvisation. Neuroimage, 41(2), 535–543.

    PubMed  Google Scholar 

  • Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. Trends in Cognitive Sciences, 11(2), 49–57.

    PubMed  Google Scholar 

  • Catani, M., de Schotten, M. T., Slater, D., & Dell'Acqua, F. (2013). Connectomic approaches before the connectome. Neuroimage, 80, 2–13.

    CAS  PubMed  Google Scholar 

  • Costa, P. T., & McCrae, R. R. (1992). Neo PI-R professional manual. Odessa: PsychologicalAssessment Resources.

  • Curtis, C. E., & D'Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7(9), 415–423.

    PubMed  Google Scholar 

  • Dandan, T., Wenfu, L., Tianen, D., Nusbaum, H. C., Jiang, Q., & Qinglin, Z. (2013). Brain mechanisms of valuable scientific problem finding inspired by heuristic knowledge. Experimental Brain Research, 228(4), 437–443.

    PubMed  Google Scholar 

  • Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136(5), 822–848.

    PubMed  Google Scholar 

  • Dreher, J.-C., & Berman, K. F. (2002). Fractionating the neural substrate of cognitive control processes. Proceedings of the National Academy of Sciences, 99(22), 14595–14600.

    CAS  Google Scholar 

  • Feist, G. J. (1998). A meta-analysis of personality in scientific and artistic creativity. Personality and Social Psychology Review, 2(4), 290–309.

    CAS  PubMed  Google Scholar 

  • Feist, G. J., & Barron, F. X. (2003). Predicting creativity from early to late adulthood: intellect, potential, and personality. Journal of Research in Personality, 37(2), 62–88.

    Google Scholar 

  • Fink, A., & Benedek, M. (2014). EEG alpha power and creative ideation. Neuroscience and Biobehavioral Reviews, 44, 111–123.

    PubMed  PubMed Central  Google Scholar 

  • Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., Neuper, C., Ebner, F., & Neubauer, A. C. (2009). The creative brain: investigation of brain activity during creative problem solving by means of EEG and FMRI. Human Brain Mapping, 30(3), 734–748.

    PubMed  Google Scholar 

  • Fink, A., Grabner, R. H., Gebauer, D., Reishofer, G., Koschutnig, K., & Ebner, F. (2010). Enhancing creativity by means of cognitive stimulation: evidence from an fMRI study. Neuroimage, 52(4), 1687–1695.

    PubMed  Google Scholar 

  • Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences, 100(1), 253–258.

    CAS  Google Scholar 

  • Greicius, M. D., Supekar, K., Menon, V., & Dougherty, R. F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex, 19(1), 72–78.

    PubMed  Google Scholar 

  • Honey, C., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.-P., Meuli, R., & Hagmann, P. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences, 106(6), 2035–2040.

    CAS  Google Scholar 

  • Jung, R. E., Grazioplene, R., Caprihan, A., Chavez, R. S., & Haier, R. J. (2010). White matter integrity, creativity, and psychopathology: disentangling constructs with diffusion tensor imaging. PLoS One, 5(3), e9818.

    PubMed  PubMed Central  Google Scholar 

  • Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7, 330.

  • Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., Reber, P. J., & Kounios, J. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology, 2(4), e97.

    PubMed  PubMed Central  Google Scholar 

  • Kleibeuker, S. W., Koolschijn, P. C. M., Jolles, D. D., De Dreu, C. K., & Crone, E. A. (2013). The neural coding of creative idea generation across adolescence and early adulthood. Frontiers in Human Neuroscience, 7, 15.

  • Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302(5648), 1181–1185.

    CAS  PubMed  Google Scholar 

  • Li, W., Li, X., Huang, L., Kong, X., Yang, W., Wei, D., Li, J., Cheng, H., Zhang, Q., & Qiu, J. (2014). Brain structure links trait creativity to openness to experience. Social Cognitive and Affective Neuroscience, 10(2), 191–198.

  • Li, W., Yang, J., Zhang, Q., Li, G., & Qiu, J. (2016). The association between resting functional connectivity and visual creativity. Scientific Reports, 6, 25395.

  • Liu, S., Erkkinen, M. G., Healey, M. L., Xu, Y., Swett, K. E., Chow, H. M., & Braun, A. R. (2015). Brain activity and connectivity during poetry composition: toward a multidimensional model of the creative process. Human Brain Mapping, 36(9), 3351–3372.

    PubMed  PubMed Central  Google Scholar 

  • Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., & Macrae, C. N. (2007). Wandering minds: the default network and stimulus-independent thought. Science, 315(5810), 393–395.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mok, L. W. (2014). The interplay between spontaneous and controlled processing in creative cognition. Frontiers in Human Neuroscience, 8, 663.

  • Mumford, M. D. (2002). Social innovation: ten cases from Benjamin Franklin. Creativity Research Journal, 14(2), 253–266.

    Google Scholar 

  • Park, H. R., Kirk, I. J., & Waldie, K. E. (2015). Neural correlates of creative thinking and schizotypy. Neuropsychologia, 73, 94–107.

    PubMed  Google Scholar 

  • Petrides, M. (2005). Lateral prefrontal cortex: architectonic and functional organization. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1456), 781–795.

    PubMed  PubMed Central  Google Scholar 

  • Qiu, J., Li, H., Jou, J., Liu, J., Luo, Y., Feng, T., Wu, Z., & Zhang, Q. (2010). Neural correlates of the “Aha” experiences: evidence from an fMRI study of insight problem solving. Cortex, 46(3), 397–403.

    PubMed  Google Scholar 

  • Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24(1), 92–96.

    Google Scholar 

  • Saggar, M., Quintin, E.-M., Kienitz, E., Bott, N. T., Sun, Z., Hong, W.-C., Chien, Y.-h., Liu, N., Dougherty, R. F., & Royalty, A. (2015). Pictionary-based fMRI paradigm to study the neural correlates of spontaneous improvisation and figural creativity. Scientific Reports, 5, 10894.

  • Schacter, D. L., Addis, D. R., Hassabis, D., Martin, V. C., Spreng, R. N., & Szpunar, K. K. (2012). The future of memory: remembering, imagining, and the brain. Neuron, 76(4), 677–694.

    CAS  PubMed  Google Scholar 

  • Silvia, P. J., Winterstein, B. P., Willse, J. T., Barona, C. M., Cram, J. T., Hess, K. I., Martinez, J. L., & Richard, C. A. (2008). Assessing creativity with divergent thinking tasks: exploring the reliability and validity of new subjective scoring methods. Psychology of Aesthetics, Creativity, and the Arts, 2(2), 68–85.

    Google Scholar 

  • Silvia, P. J., Nusbaum, E. C., Berg, C., Martin, C., & O’Connor, A. (2009). Openness to experience, plasticity, and creativity: exploring lower-order, high-order, and interactive effects. Journal of Research in Personality, 43(6), 1087–1090.

    Google Scholar 

  • Smith, S. M., Vidaurre, D., Beckmann, C. F., Glasser, M. F., Jenkinson, M., Miller, K. L., Nichols, T. E., Robinson, E. C., Salimi-Khorshidi, G., & Woolrich, M. W. (2013). Functional connectomics from resting-state fMRI. Trends in Cognitive Sciences, 17(12), 666–682.

    PubMed  PubMed Central  Google Scholar 

  • Sporns, O. (2013). The human connectome: origins and challenges. Neuroimage, 80, 53–61.

    PubMed  Google Scholar 

  • Stein, M. I. (1953). Creativity and culture. The Journal of Psychology, 36(2), 311–322.

    Google Scholar 

  • Sternberg, R. J., & Lubart, T. I. (1996). Investing in creativity. American Psychologist, 51(7), 677–688.

    Google Scholar 

  • Sun, J., Chen, Q., Zhang, Q., Li, Y., Li, H., Wei, D., Yang, W., & Qiu, J. (2016). Training your brain to be more creative: Brain functional and structural changes induced by divergent thinking training. Human Brain Mapping, 37, 3375–3387.

    PubMed  Google Scholar 

  • Sutin, A. R., Beason-Held, L. L., Resnick, S. M., & Costa, P. T. (2009). Sex differences in resting-state neural correlates of openness to experience among older adults. Cerebral Cortex, 19(12), 2797–2802.

  • Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2010a). Regional gray matter volume of dopaminergic system associate with creativity: evidence from voxel-based morphometry. Neuroimage, 51(2), 578–585.

    PubMed  Google Scholar 

  • Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2010b). White matter structures associated with creativity: evidence from diffusion tensor imaging. Neuroimage, 51(1), 11–18.

    PubMed  Google Scholar 

  • Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2012). The association between resting functional connectivity and creativity. Cerebral Cortex, 22(12), 2921–2929.

    PubMed  Google Scholar 

  • Whitney, C., Jefferies, E., & Kircher, T. (2011). Heterogeneity of the left temporal lobe in semantic representation and control: priming multiple versus single meanings of ambiguous words. Cerebral Cortex, 21(4), 831–844.

    PubMed  Google Scholar 

  • Wu, X., Yang, W., Tong, D., Sun, J., Chen, Q., Wei, D., Zhang, Q., Zhang, M., & Qiu, J. (2015). A meta-analysis of neuroimaging studies on divergent thinking using activation likelihood estimation. Human Brain Mapping, 36, 2703–2718.

    PubMed  Google Scholar 

  • Zhu, F., Zhang, Q., & Qiu, J. (2013). Relating inter-individual differences in verbal creative thinking to cerebral structures: an optimal voxel-based morphometry study. PLoS One, 8(11), e79272.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (31470981; 31571137; 31500885; 31600878; 31771231), Project of the National Defense Science and Technology Innovation Special Zone, Chang Jiang Scholars Program, National Outstanding Young People Plan, the Program for the Top Young Talents by Chongqing, the Fundamental Research Funds for the Central Universities (SWU1709568, SWU1609177), the Postgraduate Science Innovation Foundation of Chongqing (CYB18109), Natural Science Foundation of Chongqing (cstc2015jcyjA10106), Fok Ying Tung Education Foundation (151023), the Research Program Funds of the Collaborative Innovation Center of Assessment toward Basic Education Quality at Beijing Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Qiu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Brain Imaging Center Institutional Review Board of Southwest China University and with the standards of the Declaration of Helsinki (1991).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Shi, L., Chen, Q. et al. Openness to experience and psychophysiological interaction patterns during divergent thinking. Brain Imaging and Behavior 13, 1580–1589 (2019). https://doi.org/10.1007/s11682-018-9965-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-018-9965-2

Keywords

Navigation