Skip to main content
Log in

The potential of arbuscular mycorrhizal fungi to conserve Kalappia celebica, an endangered endemic legume on gold mine tailings in Sulawesi, Indonesia

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Kalapi (Kalappia celebica) is an endemic legume of Sulawesi and has been included in the endangered category since the early 1980s. Conservation of the species is possible through ex situ culture techniques. Arbuscular mycorrhizal fungi (AMF) can accelerate plant growth which in turn supports the conservation of endangered species. This study aimed to assess the efficacy of local AMF to accelerate the growth of kalapi and increase nutrient uptake in kalapi grown in gold mine tailing media. There were three AMF treatments, Glomus claroideum, Glomus coronatum, and a mixture of both, plus the control. Each treatment was replicated three times, each consisting of five plants. The results show that the highest AMF colony was obtained by kalapi seedlings inoculated with Glomus coronatum and the mixture of AMF. The range of mycorrhizae inoculation effect values was 59.7–71.3%. AMF inoculation increased growth and dry weight of 4-month-old seedlings compared to controls. Dry and total weights of kalapi inoculated with G. coronatum were significantly different from those inoculated with the AMF mixture. However, they are not significantly different from kalapi inoculated with G. claroideum. The results also show that AMF increased nitrogen and phosphorous uptake by the roots, as well as nitrogen, phosphorous, potassium, manganese and iron by the shoots. All AMF treatments decreased potassium uptake in the roots, except in kalapi inoculated with G. coronatum. The AMF mixture decreased iron contents the roots by 15%. AMF can be developed into biofertilizer to support the conservation of kalapi in tropical Indonesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbott LK, Johnson NC (2017) Introduction: perspectives on mycorrhizas and soil fertility. In: Johnson NC, Gehring C, Jansa J (eds) Mycorrhizal mediation of soil fertility, structure, and carbon storage. Academic Press, New York, pp 93–105

    Google Scholar 

  • Arif A, Tuheteru FD, Kandari AM, Husna Mekuo IS, Masnun (2016) Status and culture of arbuscular mycorrhizal fungi isolated from rhizosphere of endemic and endangered species of Kalapi (Kalappia celebica Kosterm). Eur J Sus Dev 5(4):395–402

    Google Scholar 

  • Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84:373–381

    Google Scholar 

  • Barua A, Gupta SD, Mridha MAU, Bhuiyan MK (2010) Effect of arbuscular mycorrhizal fungi on growth of Gmelina arborea in arsenic-contaminated soil. J For Res 21(4):423–432

    CAS  Google Scholar 

  • Bothe H, Turnau K, Regvar M (2010) The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats [review]. Mycorrhiza 20:445–457

    PubMed  Google Scholar 

  • Brown PH (2006) Nickel. In: Barker AV, Pilbeam DJ (eds) Handbook of plant nutrition. CRC Taylor & Francis, New York, pp 395–410

    Google Scholar 

  • Brundrett M, Bougher N, Deu B, Grove T, Majalaczuk (1996) Working with mycorrhizas in forestry and agriculture. Australian Centre for International Agriculture Research, Canberra

    Google Scholar 

  • Carter MR (1993) Soil sampling and methods of analysis Boca Raton. Lewis Publishers, USA

    Google Scholar 

  • Choosa-Nga P, Sangwanit U, Kaewgrajang T (2019) The arbuscular mycorrhizal fungi’s diversity in fabaceous trees species of Northeastern Thailand. Biodiversitas 20(2):405–412

    Google Scholar 

  • Duryea ML, Brown GN (1984) Seedling physiology and reforestation success. In: Proceeding of the physiology working group Technical Session. Dr. W. Juck Publishers, Boston

  • Edwards DP, Socolar JB, Mills SC, Burivaloka Z, Koh LP, Wilcove DS (2019) Conservation of tropical forests in the anthropocene. Curr Biol Rev 29:R1008–R1020

    CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fiqri A, Utomo WH, Handayanto E (2016) Effect of arbuscular mycorrhizal fungi on the potential of three wild plant species for phytoextraction of mercury from small-scale gold mine tailings. J Degrade Min Land Manag 3(3):551–558

    Google Scholar 

  • Fuchs B, Haselwandter K (2008) Arbuscular mycorrhiza of endangered plant species: potential impacts on restoration strategies. In: Varma A (ed) Mycorrhiza. Springer, Berlin

    Google Scholar 

  • González-Chávez MC, Carrillo-Gonzales R, Wright SF, Nichols KA (2004) The role glomalin, a protein produced by mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323

    PubMed  Google Scholar 

  • Habte M, Manjunath A (1991) Categories of vesicular–arbuscular mycorrhizal dependency of host species. Mycorrhiza 1:3–12

    Google Scholar 

  • He WY, Fan XX, Zhou ZX, Zhang HH, Gao X, Song FQ, Geng G (2019) The effect of Rhizophagus irregularis on salt stress tolerance of Elaeagnus angustifolia roots. J For Res 5:1–10. https://doi.org/10.1007/s11676-019-01053-1

    Article  CAS  Google Scholar 

  • Husna Budi RSW, Mansur I, Kusmana C (2015) Growth response of kayu kuku (Pericopsis mooniana (Thw.) Thw) seedling to indigenous arbuscular mycorrhizal fungi inoculation. Jurnal Pemuliaan Tanaman Hutan 9(3):131–148

    Google Scholar 

  • Husna, Budi RSW, Mansur I, Kusmana C (2016) Growth and nutrient status of kayu kuku (Pericopsis mooniana Thw.) with micorrhiza in soil media of nickel post mining. Pak J Biol Sci 19:158–170

    CAS  PubMed  Google Scholar 

  • Husna, Tuheteru FD, Arif A (2017a) Arbuscular mycorrhizal fungi and plant growth on serpentine soils. In: Wu QS (ed) Arbsucular mycorrhizas and stress tolerance of plants. Springer, Singapore, pp 293–303

    Google Scholar 

  • Husna, Tuheteru FD, Wigati E (2017b) Growth response and dependency of endangered nedum tree species (Pericopsis mooniana) affected by indigenous arbuscular mycorrhizal fungi inoculation. Nusant Biosci 9(1):57–61

    Google Scholar 

  • Husna, Tuheteru FD, Arif A (2018) Arbuscular mycorrhizal fungi symbiosis and conservation of endangered tropical legume trees. In: Giri B et al (eds) Root biology, soil biology 52. Springer, Germany, pp 465–486

    Google Scholar 

  • Husna, Mansur I, Budi RSW, Tuheteru FD, Arif A, Tuheteru EJ, Albasri (2019) Effects of arbuscular mycorrhizal fungi and organic material on growth and nutrient uptake by Pericopsis mooniana in coal mine. Asian J Plant Sci 18(3):101–109

    CAS  Google Scholar 

  • IUCN (1994) IUCN Red List Categories. Prepared by the IUCN Species Survival Commission. IUCN, Gland Switzerland

  • Joner EJ, Leyval C (1997) Uptake of 109Cd by roots and hiphae of a Glomus mosseae/Trifolium subterraneum Mycorrhiza from soil amended with high and low concentration of cadmium. New Phytol 135:353–360

    CAS  Google Scholar 

  • Kafkas S, Ortas I (2009) Various mycorrhizal fungi enhance dry weights, P and Zn uptake of four Pistacia species. J Plant Nutr 32:146–159

    CAS  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (2008) Plant physiology ecology, 2nd edn. Springer, New York

    Google Scholar 

  • Liam AT, Arif A, Clark RP, Girmansyah D, Kintamani E, Prychid CJ, Pujirahayu N, Rosmarlinansiah, Brearly FQ, Utteridge TMA, Lewis GP (2019) An enigmatic genus on an enigmatic island: the re-discovery of Kalappia on Sulawesi. Ecology 100(11):e02793

    Google Scholar 

  • Madejon E, Doronila AI, Madejon P, Baker AJM, Woodrow IE (2012) Biosolids, mycorrhizal fungi and eucalypts for phytostabilization of arsenical sulphidic mine tailings. Agrofor Syst 84(3):389–399

    Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 12:563–569

    CAS  PubMed  Google Scholar 

  • Miransari M (2017) Arbuscular mycorrhizal fungi and heavy metal tolerance in plants. In: Wu QS (ed) Arbuscular mycorrhizas and stress tolerance of plants. Springer, Singapore, pp 147–162

    Google Scholar 

  • Muin A (2003) Pertumbuhan anakan Ramin (Gonystylus bancanus (Miq.) Kurz)) dengan inokulasi cendawan mikoriza arbuskula (CMA) pada berbagai intensitas cahaya dan dosis fosfat alam [dissertation]. Program Pascasarjana Institut Pertanian Bogor

  • Orłowska E, Jurkiewicz A, Anielska T, Godzik B, Turnau K (2005) Influence of different arbuscular mycorrhiza fungal (AMF) strains on heavy metal uptake by Plantago lanceolata (Plantaginaceae). Pol Bot Stud 19:65–72

    Google Scholar 

  • Orłowska E, Orłowski D, Mesjasz-Przybyłowicz J, Turnau K (2011) Role of ycorrhizal colonization in plant establishment on an alkaline gold mine tailing. Int J Phytoremediat 13:185–205

    Google Scholar 

  • Panwar J, Tarafdar JC (2006) Distribution of three endangered medicinal plant species and their colonization with arbuscular mycorrhizal fungi. J Arid Environ 65:337–350

    Google Scholar 

  • Peraturan Menteri Kehutanan (the Minister of Forestry Regulation) No. P.57/Menhut-II/2008 (2008) tentang Arahan Strategi Konservasi Spesies Nasional 2008–2018

  • Santoso E, Gunawan AW, Turjaman M (2007) Kolonisasi cendawan mikoriza arbuskula pada bibit tanaman penghasil gaharu Aquilaria microcarpa Baill. Jurnal Penelitian Hutan dan Konservasi ALam, IV 5:499–509

    Google Scholar 

  • Sharma D, Rupan K, Bhatnagar AK (2008) Arbuscular mycorrhizal (AM) technology for the conservation of Curculigo orchioides Gaertn.: an endangered medicinal herb. World J Microbiol Biotechnol 24:395–400

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Sosef MSM, Hong LT, Prawirohatmodjo S (1998) Timber trees: lesser-known timbers No 5 (3). Prosea, Bogor

    Google Scholar 

  • Tuheteru FD, Kusmana C, Mansur I, Iskandar (2015) Response of lonkida (Nauclea orientalis L.) towards mycorrhizal inoculum in waterlogged condition. Biotropia 22(1):61–71

    Google Scholar 

  • Turjaman M, Santosa E, Sumarna Y (2006a) Arbuscular mycorrhizal fungi increased early growth of gaharu wood species Aquilaria malaccensis and A. crasna under greenhouse conditions. J For Res 3(2):139–148

    Google Scholar 

  • Turjaman M, Tamai Y, Santoso E, Osaki M, Tawaraya K (2006b) Arbuscular mycorrhizal fungi incresead early growth of two nontimber forest product species Dyera polyphylla and Aquilaria filaria under greenhouse conditions. Mycorrhiza 16:459–464

    PubMed  Google Scholar 

  • UNEP-WCMC (2007) Strategies for the sustainable use and management of timber tree species subject to international trade: South East Asia. Cambridge

  • Wang FY (2017) Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration: Mechanisms and applications. Crit Rev Environ Sci Technol 47:1901–1957

    Google Scholar 

  • Wang FY, Lin XG, Yin R (2005) Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant Soil 269:225–232

    CAS  Google Scholar 

  • Whitmore TC, Tantra IGM, Sutisna U (1989) Tree flora of Indonesia check list for Sulawesi. Forest Research and Development Centre, Forestry of Departemen, Bogor

    Google Scholar 

  • Whitten AJ, Mustafa M, Henderson GS (1987) Ekologi Sulawesi. Gajah Mada University Press, Yogyakarta

    Google Scholar 

  • Wulandari D, Saridi ChengWG, Tawaraya K (2016) Arbuscular mycorrhizal fungal inoculation improves Albizia saman and Paraserianthes falcataria growth in post-opencast coal mine in East Kalimantan, Indonesia. For Ecol Manag 376:67–73

    Google Scholar 

  • Zhu XC, Song FB, Liu SQ, Liu TD, Zhou X (2012) Arbsucular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant Soil Environ 58(4):186–191

    CAS  Google Scholar 

  • Zubek S, Turnau K, Tsimilli-Michael M, Strasser RJ (2009) Response of endangered plant species to inoculation with arbuscular mycorrhizal fungi and soil bacteria. Mycorrhiza 19:113–123

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Husna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: The work was supported by the funding support (No. 171.SP2H/LT/DRPM/2019) from Directorate General of Resource, Science, Technology, and Higher Education, Ministry of Research, and Technology of the Republic of Indonesia.

The online version is available at http://www.springerlink.com

Corresponding editor: Tao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Husna, Tuheteru, F.D. & Arif, A. The potential of arbuscular mycorrhizal fungi to conserve Kalappia celebica, an endangered endemic legume on gold mine tailings in Sulawesi, Indonesia. J. For. Res. 32, 675–682 (2021). https://doi.org/10.1007/s11676-020-01097-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-020-01097-8

Keywords

Navigation