Skip to main content
Log in

Transcriptome analysis of Idesia polycarpa Maxim. var vestita Diels flowers during sex differentiation

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Idesia polycarpa Maxim. var vestita Diels. is a dioecious tree species native to eastern Asia. There are difficulties associated with distinguishing the sex of the plant at the seedling stage. In order to explore the mechanism of sex differentiation in flower development, we conducted the transcriptome profiles of male and female flowers at early, metaphase and late developmental stages. Approximately 123,335 unigenes with a total length of 83,996 Mb and an average length of 168 bp were assembled. The unigenes were blasted into Nr, Nt, Pfam, KOG/COG, Swiss-prot, KEGG, GO databases. Homology analysis demonstrated that I. polycarpa and black cottonwood had the highest homology with the alignment of 92,871 sequences. This study identified 80 groups of transcription factor families with a total of 1475 unigenes, mainly including MYB, WRKY, AP2 and bHLH transcription factor families. KEGG pathway analysis showed that the expression of numerous plant hormones (cytokinin, gibberellin and ethylene) and flavonoid biosynthesis pathway were different at various stages of female and male flower development. In addition, a number of unigenes associated with flowering were identified which were key genes associated with photoperiodic, vernalization, thermosensory, gibberellin, and autonomic pathways. The results show that I. polycarpa floral organ development was in accordance with the ABCDE model, in which the down-regulation of the B gene family might affect stamen fertility in late stages of female flower development. qRT-PCR experiments validated that the expression patterns of 15 unigenes were consistent with those in RNA-seq results. The results highlight a central role for plant sex identification in seedling production and a sex-determining mechanism for dioecious plants. In addition, the transcriptome data provided a theoretical basis for I. polycarpa genetic diversity analysis and molecular- assisted breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ai J, Li AM, Li CY, Wang J, Shen YJ (2002) The effect of cytokinin on sex conversion of male plants of Vitis amurensis. Acta Hortic Sin 29(2):163–164

    Google Scholar 

  • Amasino R (2010) Seasonal and developmental timing of flowering. Plant J Cell Mol Biol 61(6):1001

    CAS  Google Scholar 

  • Aryal R, Ming R (2014) Sex determination in flowering plants: papaya as a model system. Plant Sci Int J Exp Plant Biol 217–218(1):56

    Google Scholar 

  • Bai SNA (2010) From ethylene promotion of female flowers to ethylene inhibition of stamen development: a review on the study of developmental fate of inappropriate organs in unisexual cucumber flowers. Sci Sin 40(6):469–475

    Google Scholar 

  • Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456(7218):53–59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blazquez MA, Ahn JD (2003) A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat Genet 33(2):168

    CAS  PubMed  Google Scholar 

  • Bräutigam A, Gowik U (2010) What can next generation sequencing do for you? Next generation sequencing as a valuable tool in plant research. Plant Biol 12(6):831–841

    PubMed  Google Scholar 

  • Chen MS, Pan BZ, Fu QT, Tao YB, Martínez-Herrera J, Niu LJ, Ni J, Dong YL, Zhao ML, Xu ZF (2017) Comparative transcriptome analysis between gynoecious and monoecious plants identifies regulatory networks controlling sex determination in Jatropha curcas. Front Plant Sci 7:1953

    PubMed  PubMed Central  Google Scholar 

  • Cheng H, Song SS, Xiao LT, Soo HM, Cheng ZW, Xie DX, Peng JR (2009) Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet 5(3):e1000440

    PubMed  PubMed Central  Google Scholar 

  • Chu QG, Cao YF, Jiang ZJ (2013) Micro-morphological observations on flower bud differentiation of super prematurity cultivated strawberry. Acta Botanica Boreali-Occidentalia Sin 1049(1049):459–462

    Google Scholar 

  • Conesa A, Götz S, García Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676

    CAS  PubMed  Google Scholar 

  • Cui RF, Han JK, Zhao SZ, Su KM, Wu F, Du XQ, Xu QJ, Chong K, Theissen G, Meng Z (2010) Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J 61(5):767–781

    CAS  PubMed  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15(10):573–581

    CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5(5):199–206

    CAS  PubMed  Google Scholar 

  • Frerigmann H, Gigolashvili T (2014) MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana. Mol Plant 7(5):814–828

    CAS  PubMed  Google Scholar 

  • Gong BC, Da WL, Jiang XB, Kai YW, Bai JJ, Peng JL (2012) Variation analysis of fruit oil content of Idesia polycarpa Maxim. from different populations. Acta Botanica Boreali-Occidentalia Sin 32(8):1680–1685

    Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Xian A, Fan L, Raychowdhury R, Zeng Q (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo S, Zheng Y, Joung JG, Liu S, Zhang Z, Crasta OR, Sobral BW, Xu Y, Huang S, Fei Z (2010) Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types. BMC Genom 11(1):384

    Google Scholar 

  • Guo H, Shen QW, Yao CH (2012) Quality Analysis of Idesia polycarpa Maxim Seed Oil. Mod Food Sci Technol 28(3):345–347

    CAS  Google Scholar 

  • Harborne JB, Williams CA (1973) A chemotaxonomic survey of flavonoids and simple phenols in leaves of the Ericaceae. Bot J Linn Soc 66(1):37–54

    CAS  Google Scholar 

  • Hobert O (2008) Gene regulation by transcription factors and microRNAs. Science 319(5871):1785

    CAS  PubMed  Google Scholar 

  • Hui ML, Huang XY, Gao CW, Qin XM (2007) Sex identification of Siraidia grosvenorii by isozyme analysis. Guihaia 27(5):791–792

    Google Scholar 

  • Jack T, Brockman LL, Meyerowitz EM (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68(4):683

    CAS  PubMed  Google Scholar 

  • Jiang XB, Gong BC, Da WL, Kai YW, Zhao XM, Deng QE (2014) Selection of the plus trees of Idesia polycarpa maxim. from the natural seedlings. J Plant Genet Resour 15(4):738–745

    CAS  Google Scholar 

  • Kai-Lin MO, Zhang ZX, Luo XL, Yang L (2009) Exploitage of idesia polycarpa oil. Sci Technol Cereal 17(6):24–25

    Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T (2007) KEGG for linking genomes to life and the environment. Nucl Acids Res 36((suppl_1)):D480–D484

    PubMed  Google Scholar 

  • Kang HG, Kim J, Kim B, Jeong H, Sun HC, Kim EK, Lee HY, Lim PO (2011) Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana. Plant Sci 180(4):634

    CAS  PubMed  Google Scholar 

  • Krol ARVD, Brunelle A, Tsuchimoto S, Chua NH (1993) Functional analysis of petunia floral homeotic MADS box gene pMADS1. Genes Dev 7(7A):1214–1228

    PubMed  Google Scholar 

  • Laubinger S, Marchal V, Gentilhomme J, Wenkel S, Adrian J, Jang S, Kulajta C, Braun H, Coupland G, Hoecker U (2006) Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development 133(16):3213–3222

    CAS  PubMed  Google Scholar 

  • Liu LJ, Zhang YC, Li QH, Sang Y, Mao J, Lian HL, Wang L, Yang HQ (2008) COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell 20(2):292–306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu LH, Yang H, Wang YC, Wang LS (2011) Extraction and separation of alcohol diterpenoids from Jatropha curcas oil. Guangdong Agric Sci 38(6):157–160

    CAS  Google Scholar 

  • Liu JJ, Yin TM, Ye N, Chen YN, Yin TT, Liu M, Hassani D (2013) Transcriptome analysis of the differentially expressed genes in the male and female shrub willows (Salix suchowensis). PLoS ONE 8(4):e60181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lü BB, Sun WW, Zhang SP, Zhang CL, Qian J, Wang XM, Gao R, Dong HS (2011) HrpN Ea-induced deterrent effect on phloem feeding of the green peach aphid Myzus persicae requires AtGSL5 and AtMYB44 genes in Arabidopsis thaliana. J Biosci 36(1):123–137

    PubMed  Google Scholar 

  • Mahida SV, Valia RZ (2015) Sitapara HH (2015) Growth, yield and sex-expression as influenced by plant growth regulators in sponge gourd cv. PUSA CHIKNI. Asian J Hortic 10(1):122–125

    Google Scholar 

  • Makkena S, Lee E, Sack FD, Lamb RS (2012) The R2R3 MYB transcription factors FOUR LIPS and MYB88 regulate female reproductive development. J Exp Bot 63(15):5545–5558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandaokar A, Browse J (2009) MYB108 acts together with MYB24 to regulate jasmonate-mediated stamen maturation in Arabidopsis. Plant Physiol 149(2):851–862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mao XZ, Cai T, Olyarchuk JG, Wei LP (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21(19):3787–3793

    CAS  PubMed  Google Scholar 

  • Mei LJ, Dong N, Li FS, Li N, Yao M, Chen F, Tang L (2017) Transcriptome analysis of female and male flower buds of Idesia polycarpa Maxim. var. vestita Diels. Electron J Biotechnol EJB 29:39–46

    CAS  Google Scholar 

  • Millar AA, Gubler F (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17(3):705–721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moon J, Lee H, Kim M, Lee I (2005) Analysis of flowering pathway integrators in Arabidopsis. Plant Cell Physiol 46(2):292

    CAS  PubMed  Google Scholar 

  • Moyroud E, Minguet EG, Ott F, Yant L, Posé D, Monniaux M, Blanchet S, Bastien O, Thévenon E, Weigel D (2011) Prediction of regulatory interactions from genome sequences using a biophysical model for the Arabidopsis LEAFY transcription factor. Plant Cell 23(4):1293–1306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen XC, Hoang MHT, Kim HS, Lee K, Liu XM, Kim SH, Bahk S, Park HC, Chung WS (2012) Phosphorylation of the transcriptional regulator MYB44 by mitogen activated protein kinase regulates Arabidopsis seed germination. Biochem Biophys Res Commun 423(4):703–708

    CAS  PubMed  Google Scholar 

  • Novaes E, Drost DR, Farmerie WG, Pappas GJ, Grattapaglia D, Sederoff RR, Kirst M (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genom 9(1):312

    Google Scholar 

  • Pan BZ, Xu ZF (2011) Benzyladenine treatment significantly increases the seed yield of the biofuel plant Jatropha curcas. J Plant Growth Regul 30(2):166–174

    CAS  Google Scholar 

  • Paul S, Andrew M, Owen O, Sbn TWJ, Daniel R, Nada A, Benno S, Trey I (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405(6783):200

    CAS  PubMed  Google Scholar 

  • Persak H, Pitzschke A (2013) Tight interconnection and multi-level control of Arabidopsis MYB44 in MAPK cascade signalling. PLoS ONE 8(2):e57547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res 29(9):e45

    CAS  PubMed  Google Scholar 

  • Phan HA, Iacuone S, Li SF, Parish RW (2011) The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. Plant Cell 23(6):2209–2224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinyopich A, Ditta GS, Savidge B, Liljegren SJ (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424(6944):85

    CAS  PubMed  Google Scholar 

  • Renner SS (1995) Dioecy and its correlates in flowering plants. Am J Bot 82(5):596–606

    Google Scholar 

  • Richards AJ (1997) Plant breeding systems. Tamkang J Math 3

  • Rocheta M, Sobral R, Magalhães J, Amorim MI, Ribeiro T, Pinheiro M, Egas C, Morais-Cecílio L, Costa MM (2014) Comparative transcriptomic analysis of male and female flowers of monoecious Quercus suber. Front Plant Sci 5(599):1–16

    Google Scholar 

  • Song SS, Qi TC, Wasternack C, Xie DX (2014) Jasmonate signaling and crosstalk with gibberellin and ethylene. Curr Opin Plant Biol 21:112–119

    CAS  PubMed  Google Scholar 

  • Sorensen AM, Kröber S, Unte US, Huijser P, Dekker K, Saedler H (2003) The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant Journal 33(2):413–423

    CAS  PubMed  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat biotechnol 28(5):511–515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vandesompele J, Preter KD, Pattyn F, Poppe B, Roy NV, Paepe AD, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):research0034.0031

    Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27(9):522–530

    CAS  PubMed  Google Scholar 

  • Wang LK, Feng ZX, Wang X, Wang XW, Zhang XG (2009a) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26(1):136–138

    CAS  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009b) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SY, Lee PF, Lee YI, Hsiao YY, Chen YY, Pan ZJ, Liu ZJ, Tsai WC (2011) Duplicated C-class MADS-box genes reveal distinct roles in gynostemium development in Cymbidium ensifolium (Orchidaceae). Plant Cell Physiol 52(3):563–577

    CAS  PubMed  Google Scholar 

  • Winter KU, Saedler H, Theissen G (2002) On the origin of class B floral homeotic genes: functional substitution and dominant inhibition in Arabidopsis by expression of an orthologue from the gymnosperm Gnetum. Plant J 31(4):457–475

    CAS  PubMed  Google Scholar 

  • Wu ZW, Xie SX, Liu Q, Du WJ (2010) Research progress and application prospect of Idesia polycarpa. Guizhou Agric Sci 38(1):161–164

    Google Scholar 

  • Xu PZ, Liu T, Yang Y, Hu YQ (2007) The role of abscisic acid in plant flowering. Acta Botanica Yunnanica 29(2):215–222

    CAS  Google Scholar 

  • Yang CP, Liu GF, Jiang J, Liang Y (2002) Changes of endogenous hormones in Betula platyphylla during the male flower development. J Northeast For Univ 30(4):1–4

    CAS  Google Scholar 

  • Yang ZJ, Peng ZS, Wei SH, Liao ML, Yu Y, Jang ZY (2015) Pistillody mutant reveals key insights into stamen and pistil development in wheat (Triticum aestivum L.). BMC Genom 16(1):211

    Google Scholar 

  • Yang WL, Wang WW, Zhang L, Chen ZY, Guo XY, Ma T (2016) Characterization of the complete chloroplast genome of Idesia polycarpa. Conserv Genet Resour 8:1–3

    Google Scholar 

  • Ye J, Fang L, Zheng HK, Zhang Y, Chen J, Zhang ZJ, Wang J, Li ST, Li RQ, Bolund L, Wang L (2006) WEGO: a web tool for plotting GO annotations. Nucl Acids Res 34:W293–W297

    CAS  PubMed  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11(2):R14

    PubMed  PubMed Central  Google Scholar 

  • Yu H, Ito T, Zhao YX, Peng JR, Kumar PP, Meyerowitz EM (2004) Floral homeotic genes are targets of gibberellin signaling in flower development. Proc Natl Acad Sci USA 101(20):7827

    CAS  PubMed  Google Scholar 

  • Zhang XP (2011) Great Potential of Idesia polycarpa as a Woody Edible Oil Resource. J Sichuan For Sci Technol 32(2):80–83

    CAS  Google Scholar 

  • Zhang W, Sun YJ, Timofejeva L, Chen CB, Grossniklaus U, Ma H (2006) Regulation of Arabidopsis tapetum development and function by dysfunctional tapetum1 (dyt1) encoding a putative bHLH transcription factor. Development 133(16):3085–3095

    CAS  PubMed  Google Scholar 

  • Zhang JX, Wu KL, Zeng SJ, da Silva JAT, Zhao XL, Tian CE, Xia HQ, Duan J (2013) Transcriptome analysis of Cymbidium sinense and its application to the identification of genes associated with floral development. BMC Genom 14(1):279

    Google Scholar 

  • Zhang YC, Li WJ, Dou YJ, Zhang JX, Jiang GH, Miao LX, Han GF, Liu YX, Li H, Zhang ZH (2015) Transcript quantification by RNA-Seq reveals differentially expressed genes in the red and yellow fruits of Fragaria vesca. PLoS ONE 10(12):e0144356

    PubMed  PubMed Central  Google Scholar 

  • Zhao SG, Zhang YX, Zhao YP (2012) Effect of salicylic acid on pollen germinating and pollen tube growth of pear. Hubei Agric Sci 51(7):1366–1369

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Lin Tang designed the experiment, Fosheng Li, Lanju Mei, Na Li and Min Yao were responsible for the collection of plant materials and the extraction of RNA; Tingting Li and Lanju Mei analyzed the data and wrote the manuscript and Lin Tang critically reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lin Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: The work was supported by the Luzhou Science and Technology (2016CDLZ-Z20) project.

The online version is available at http://www.springerlink.com.

Corresponding editor: Tao Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 464 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Li, F., Mei, L. et al. Transcriptome analysis of Idesia polycarpa Maxim. var vestita Diels flowers during sex differentiation. J. For. Res. 31, 2463–2478 (2020). https://doi.org/10.1007/s11676-019-01046-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-019-01046-0

Keywords

Navigation