Skip to main content
Log in

Polypore fungi of Caucasian alder as a source of antioxidant and antitumor agents

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

A Correction to this article was published on 21 July 2020

This article has been updated

Abstract

Macroscopic fungi on Caucasian alder wood (Alnus subcordata) were identified and tested as a source of betulin and betulinic acid (the most important metabolites of the Betulaceae family) to evaluate levels of phenols, flavonoids and antioxidant activity. Ganoderma applanatum, Lenzites betulina, Trichaptum biforme, Rigidoporus ulamrius, Fomes fomentarius, Schizophyllum commune, Auricularia mesenterica, and Trametes versicolor were among those identified, and they differed significantly in the level of betulin and betulinic acid and phenols, flavonoids and antioxidant properties in fungal tissues extracted with methanol and with ethanol (p ≤ 0.01). G. applanatum had the most betulin (3.642%) and S. commune the most betulinic acid (1.413%). All tested fungi had high antioxidant activity, and L. betulina had the highest (97.775%). The highest amounts of phenol (719.993 mg mL−1) and flavonoids (361.403 mg mL−1) were found in the ethanolic extract from G. applanatum. Considering the results of this study and the low cost and convenient access to these fungi, they should be good sources for producing different drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

  • 21 July 2020

    As determined through 11 subcultures of Taxus cuspidata callus, the growth in FW and level of Taxol production were stable by the ninth generation.

References

  • Ajith TA, Janardhanan KK (2007) Indian medicinal mushroom as a source of antioxidant and antitumor agents. J Clin Biochem Nutr 40(3):157–162

    Article  Google Scholar 

  • Bai YH, Feng YQ, Mao DB, Xu CP (2012) Optimization for betulin production from mycelia culture of Inonotus obliquus by orthogonal design and evaluation of its antioxidant activity. J Taiwan Inst Chem Eng 43:663–669

    Article  CAS  Google Scholar 

  • Barbieri A, Quagliariello V, Vecchio VD, Falco M, Luciano A, Amruthraj NJ, Nasti G, Ottaiano A, Berretta M, Iaffaioli RV, Arra C (2017) Anticancer and anti-inflammatory properties of Ganoderma lucidum extract effects on melanoma and triple-negative breast cancer treatment. Nutrients 9(3):pii: E210. https://doi.org/10.3390/nu9030210

    Article  CAS  Google Scholar 

  • Cichewicz RH, Kouzi SA (2004) Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med Care Res Rev 24:90–114

    Article  CAS  Google Scholar 

  • Daniel A, McElhenney WH (2013) Extraction of total phenolic and flavonoids from edible wild and cultivated medicinal mushrooms as affected by different solvents. J Nat Prod Plant Resour 3(3):37–42

    Google Scholar 

  • Faass N (2012) The healing powers of wild chaga; an interview with Cass Ingram. MD. Price-Pottenger. J Health Heal 35(4):6–11

    Google Scholar 

  • Feng Y, Li M, Liu J, Xu TY, Fang RS, Chen QH, He GQ (2013) A novel one-step microbial transformation of betulin to betulinic acid catalysed by Cunningham Ella blakesleeana. Food Chem 136:73–79

    Article  CAS  Google Scholar 

  • Jasicka-Misiak I, Lipok J, Swider I, Kafarski P (2010) Possible fungistatic implications of betulin presence in Betulaceae plants and their Hymenochaetaceae parasitic fungi. Z Naturforsch C 65(3–4):201–206

    Article  CAS  Google Scholar 

  • Joel EL, Bhimba BV (2013) A secondary metabolite with antibacterial activity produced by mangrove foliar fungus Schizophyllum commune. Int J Chem Environ Biol Sci 1(1):165–168

    Google Scholar 

  • Jonathan SG, Fasidi O (2003) Antimicrobial activities of two Nigerian edible macro-fungi Lycoperdon pusilum and lycoperdon giganteum Pers. Afr J Biomed Res 6:85–90

    Google Scholar 

  • Kabanov AS, Kosogova TA, Shishkina LN, Tepliakova TV, Skarnovich MO, Mazurkova NA, Puchkova LI, Malkova EM, Stavskii EA, Drozdov IG (2011) Study of antiviral activity of extracts obtained from basidial fungi against influenza viruses of different subtypes in experiments in vitro and in vivo. Zh Mikrobiol Epidemiol Immunobiol 1:40–43

    Google Scholar 

  • Kahlos K (1994) Inonotus obliquus (Chaga Fungus): in vitro culture and the production of Inotodiol, Sterols, and other secondary metabolites. J For 26:179–198

    CAS  Google Scholar 

  • Kao CHJ, Jesuthasan AC, Bishop KS, Glucina MP, Ferguson LP (2013) Anti-cancer activities of Ganoderma lucidum: active ingredients and pathways. Funct Foods Health Dis 3:48–65

    Article  Google Scholar 

  • Kessler JH, Mullauer FB, Roo GM, Medema JP (2007) Broad in vitro efficacy of plant-derived betulinic acid against cell lines derived from the most prevalent human cancer types. Cancer Lett 251:132–145

    Article  CAS  Google Scholar 

  • Krasutsky PA (2006) Birch bark research and development. Nat Prod Res 23:919–942

    CAS  Google Scholar 

  • Lin ZB (2005) Cellular and molecular mechanisms of immuno-modulation by Ganoderma lucidum. J Pharmacol Sci 99:144–153

    Article  CAS  Google Scholar 

  • Manasseh AT, Godwin JT, Emanghe AEU, Borisde OO (2012) Phytochemical properties of Ganoderma applanatum as potential agents in the application of nanotechnology in modern day medical practice. Asian Pac J Trop Biomed 2(2):580–583

    Article  Google Scholar 

  • Mashayekhi K, Atashi S (2014) The analyzing methods in plant physiology. Sirang Press, Gorgan, p 310

    Google Scholar 

  • Nazari J, Payamnoor V, Kavosi MR (2016) The evaluation of the absorption of some secondary metabolites (betulin, betulinic acid, phenol, flavonoids) and antioxidant activity of wood-inhabiting fungi on Betula pendula (L) Roth. in Golestan province. Eco Phytochem J Med Plants 4(2):44–55

    Google Scholar 

  • Paterson RRM (2006) Ganoderma—a therapeutic fungal biofactory. Phytochemistry 67(18):1985–2001

    Article  CAS  Google Scholar 

  • Rajoriya A, Tripathy SS, Gupta N (2015) In vitro antioxidant activity of selected Ganoderma species found in Odisha. India. J Trop Plant Res 2(2):72–77

    Google Scholar 

  • Rice-Evans C (2004) Flavonoids and isoflavones (absorption, metabolism and bioactivity). Free Radic Biol Med 36:827–828

    Article  CAS  Google Scholar 

  • Saadatmand S (2007) Modern mycology. Ayandegan Press, Tehran, p 176

    Google Scholar 

  • Tabari SH, Ghorbanli M, Safaian Sh, Moosazade S (2013) Comparison of antioxidant and phytochemical properties of Trametes gibbosa. J Cell Mol Biotech 10(3):73–78

    Google Scholar 

  • Teoh YP, Don MM (2013) In vitro antifungal activities and phytochemical analysis of filamentous white-rot fungi, Schizophyllum commune. Sains Malays 42(9):1267–1272

    Google Scholar 

  • Teplyakova TV, Psurtseva NV, Kosogova TA, Mazurkova NA, Khanin VA, Vlasenko VA (2012) Antiviral activity of polyporoid mushrooms (higher Basidiomycetes) from Altai Mountains (Russia). Int J Med Mushrooms 14(1):37–45

    Article  Google Scholar 

  • Wu H, Yang HY, You XL, Li YH (2012) Isolation and characterization of saponin-producing fungal endophytes from Aralia elata in Northeast China. Int J Mol Sci 13:16255–16266

    Article  CAS  Google Scholar 

  • Yin YG, Cui YR, Ding HW (2007) Optimization of betulin extraction process from Inonotus Obliquus with pulsed electric fields. Innov Food Sci Emerg Technol 9:306–310

    Article  CAS  Google Scholar 

  • Zhao GL, Yan WD, Cao D (2007) Simultaneous determination of Betulin and Betulinic acid in hite birch bark using RP–HPLC. J Pharm Biomed Anal 43:959–962

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahide Payamnoor.

Additional information

Corresponding editor: Tao Xu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: The work was supported by Gorgan university of agricultural sciences and natural resources - grant no. 93-323-28.

The online version is available at http://www.springerlink.com

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Payamnoor, V., Kavosi, M. & Nazari, J. Polypore fungi of Caucasian alder as a source of antioxidant and antitumor agents. J. For. Res. 31, 1381–1390 (2020). https://doi.org/10.1007/s11676-019-00892-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-019-00892-2

Keywords

Navigation