Skip to main content
Log in

Modelling potential distribution of a pine bark beetle in Mexican temperate forests using forecast data and spatial analysis tools

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Accurate and reliable predictions of pest species distributions in forest ecosystems are urgently needed by forest managers to develop management plans and monitor new areas of potential establishment. Presence-only species distribution models are commonly used in these evaluations. The maximum entropy algorithm (MaxEnt) has gained popularity for modelling species distribution. Here, MaxEnt was used to model the spatial distribution of the Mexican pine bark beetle (Dendroctonus mexicanus) in a daily fashion by using forecast data from the Weather Research and Forecasting model. This study aimed to exploit freely available geographic and environmental data and software and thus provide a pathway to overcome the lack of costly data and technical guidance that are a challenge to implementing national monitoring and management strategies in developing countries. Our results showed overall agreement values between 60 and 87%. The results of this research can be used for D. mexicanus monitoring and management and may aid as a model to monitor similar species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdullah SA, Nakagoshi N (2007) Forest fragmentation and its correlation to human land use change in the state of Selangor, peninsular Malaysia. For Ecol Manag 241:39–48. https://doi.org/10.1016/j.foreco.2006.12.016

    Article  Google Scholar 

  • Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol Model 162:211–232

    Article  Google Scholar 

  • Baker WL (1995) Longterm response of disturbance landscapes to human intervention and global change. Landsc Ecol 10:143–159. https://doi.org/10.1007/BF00133028

    Article  Google Scholar 

  • Castellanos Bolaños JF, Martínez Ruiz EO, Cárdenas Gómez M, Cubas González R (2013) Guía metodológica para combatir plagas de descortezadores de pino en el sur de México. Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias

    Google Scholar 

  • Chefaoiu RM, Hortal J, Lobo JM (2005) Potential distribution modelling, niche characterization and conservation status assessment using GIS tools: a case study of Iberian Copris species. Biol Conserv 122:327–338. https://doi.org/10.1016/j.biocon.2004.08.005

    Article  Google Scholar 

  • Colditz RR, Maeda P, López G et al (2010) Classifying the land cover of Mexico in the framework of the North American Land Change Monitoring System. In: American Society for photogrammetry and remote sensing annual conference 2010: opportunities for emerging geospatial technologies, pp 106–113

  • Coulson RN, Witter JA (1984) Forest entomology: ecology and management. Wiley, New York

    Google Scholar 

  • Cuéllar RG, Equihua MA, Estrada VE et al (2012) Fluctuación poblacional de Dendroctonus mexicanus Hopkins (Coleóptera: Curculionidae: Scolytinae) atraídos a trampas en el noroeste de México y correlación con variables climáticas. Boletín del Mus Entomol la Univ del Val 13:12–19

    Google Scholar 

  • Dale VH, Joyce LA, Mcnulty S et al (2001) Climate change and forest disturbances. Bioscience 51:723. https://doi.org/10.1641/0006-3568(2001)051%5b0723:CCAFD%5d2.0.CO;2

    Article  Google Scholar 

  • Delgado L, Pedraza Perez RA (2002) La madera muerta de los ecosistemas forestales. Foresta Veracruzana 4:59–66

    Google Scholar 

  • Evangelista PH, Kumar S, Stohlgren TJ, Young NE (2011) Assessing forest vulnerability and the potential distribution of pine beetles under current and future climate scenarios in the Interior West of the US. For Ecol Manag 262:307–316. https://doi.org/10.1016/j.foreco.2011.03.036

    Article  Google Scholar 

  • Gebhardt S, Wehrmann T, Ruiz M et al (2014) MAD-MEX: automatic wall-to-wall land cover monitoring for the Mexican REDD-MRV program using all landsat data. Remote Sens 6:3923–3943. https://doi.org/10.3390/rs6053923

    Article  Google Scholar 

  • Gergel SE (2007) New directions in landscape pattern analysis and linkages with remote sensing. In: Wulder MA, Franklin SE (eds) Understanding forest disturbance and spatial pattern. Taylor & Francis, Boca Raton, pp 173–208

    Google Scholar 

  • Gernandt DS, Pérez-de la Rosa JA (2014) Biodiversidad de Pinophyta (coníferas) en México. Rev Mex Biodivers 85:126–133. https://doi.org/10.7550/rmb.32195

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186. https://doi.org/10.1016/S0304-3800(00)00354-9

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • INEGI (2008) Conjunto de datos vectoriales de la carta de uso del suelo y Vegetación, Escala 1:250,000, Serie IV (Continuo Nacional). Aguascalientes, Ags., México

  • INEGI (2015) Conjunto de datos vectoriales de la carta de uso del suelo y Vegetación, Escala 1:250,000, Serie IV (Continuo Nacional). Aguascalientes, Ags., México

  • IPCC (2014) Intergovernmental panel on climate change. Climate change 2014 synthesis report

  • Knievel JC, Bryan GH, Hacker JP (2007) Explicit numerical diffusion in the WRF model. Mon Weather Rev 135:3808–3824. https://doi.org/10.1175/2007MWR2100.1

    Article  Google Scholar 

  • Lu H, Wang X, Zhang Y et al (2012) Modelling forest fragmentation and carbon emissions for REDD plus. In: Procedia engineering, pp 333–338

    Article  CAS  Google Scholar 

  • Manzo-Delgado L, López-García J, Alcántara-Ayala I (2014) Role of forest conservation in lessening land degradation in a temperate region: the Monarch Butterfly Biosphere Reserve, Mexico. J Environ Manag 138:55–66. https://doi.org/10.1016/j.jenvman.2013.11.017

    Article  Google Scholar 

  • Matthews SN, Iverson LR, Peters MP et al (2013) Assessing and comparing risk to climate changes among forested locations: implications for ecosystem services. Landsc Ecol 29:213–228. https://doi.org/10.1007/s10980-013-9965-y

    Article  Google Scholar 

  • Meggs JM, Munks SA, Corkrey R, Richards K (2004) Development and evaluation of predictive habitat models to assist the conservation planning of a threatened lucanid beetle, Hoplogonus simsoni, in north-east Tasmania. Biol Conserv 118:501–511. https://doi.org/10.1016/j.biocon.2003.10.001

    Article  Google Scholar 

  • Mitton JB, Sturgeon KB (eds) (1982) Bark beetles in North American conifers: a system for the study of evolutionary biology. University of Texas Press, Austin

    Google Scholar 

  • Moreno-Sanchez R, Torres-Rojo JM, Moreno-Sanchez F et al (2012) National assessment of the fragmentation, accessibility and anthropogenic pressure on the forests in Mexico. J For Res 23:529–541. https://doi.org/10.1007/s11676-012-0293-x

    Article  Google Scholar 

  • Moser J, Fitzgibbon B, Klepzig K (2005) Mexican pine beetle, Dendroctonus mexicanus: first record in the United States and co-occurrence with the southern pine beetle-Dendroctonus frontalis (Coleoptera). Entomol News 116:235–243

    Google Scholar 

  • Paquit JC, Pampolina NM, Tiburan CL, Manalo MMQ (2017) Maxent modeling of the habitat distribution of the critically endangered Pterocarpus indicus Willd. forma indicus In Mindanao, Philippines. J Biodivers Environ Sci 10:2222–3045

    Google Scholar 

  • Parra JL (2015) Very high resolution interpolated climate surfaces of global land areas. https://doi.org/10.1002/joc.1276

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Ray D, Behera MD, Jacob J (2017) Evaluating ecological niche models: a comparison between Maxent and GARP for predicting distribution of Hevea brasiliensis in India. Proc Natl Acad Sci India Sect B Biol Sci. https://doi.org/10.1007/s40011-017-0869-5

    Article  Google Scholar 

  • Rzedowski J (2006) Vegetacion de Mexico, 1era Edici. Comision Nacional para el Uso y Conocimiento de la Biodiversidad

  • Sáenz-Romero C, Rehfeldt GE, Duval P, Lindig-Cisneros RA (2012) Abies religiosa habitat prediction in climatic change scenarios and implications for monarch butterfly conservation in Mexico. For Ecol Manag 275:98–106. https://doi.org/10.1016/j.foreco.2012.03.004

    Article  Google Scholar 

  • Saldaña TJ (1989) Evaluación de tres insecticidas en la prevención de ataques de Dendroctonus mexicanus Hopkins (Coleóptera; Scolytidae) en Pinus leiophylla Schiede & Deppe. Universidad Autonoma Chapingo

  • Salinas-Moreno Y, Guadalupe Mendoza M, Barrios MA et al (2004) Areography of the genus Dendroctonus (Coleoptera: Curculionidae: Scolytinae) in Mexico. J Biogeogr 31:1163–1177. https://doi.org/10.1111/j.1365-2699.2004.01110.x

    Article  Google Scholar 

  • Salinas-Moreno Y, Ager A, Vargas CF et al (2010) Determining the vulnerability of Mexican pine forests to bark beetles of the genus Dendroctonus Erichson (Coleoptera: Curculionidae: Scolytinae). For Ecol Manag 260:52–61. https://doi.org/10.1016/j.foreco.2010.03.029

    Article  Google Scholar 

  • Sánchez-Martínez G, Wagner MR (2009) Host preference and attack pattern of Dendroctonus rhizophagus (Coleoptera: Curculionidae: Scolytinae): a bark beetle specialist on pine regeneration. Environ Entomol 38:1197–1204. https://doi.org/10.1603/022.038.0429

    Article  PubMed  Google Scholar 

  • SEMARNAT (2010) Visión de México sobre REDD+. Hacia un estrategia nacional, Mexico

    Google Scholar 

  • Smith SE, Mendoza MG, Zúñiga G et al (2013) Predicting the distribution of a novel bark beetle and its pine hosts under future climate conditions. Agric For Entomol 15:212–226. https://doi.org/10.1111/afe.12007

    Article  Google Scholar 

  • van Proosdij ASJ, Sosef MSM, Wieringa JJ, Raes N (2016) Minimum required number of specimen records to develop accurate species distribution models. Ecography 39:542–552. https://doi.org/10.1111/ecog.01509

    Article  Google Scholar 

  • West AM, Kumar S, Brown CS et al (2016) Field validation of an invasive species Maxent model. Ecol Inform 36:126–134. https://doi.org/10.1016/j.ecoinf.2016.11.001

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for comments and suggestions from two anonymous reviewers who helped improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Enrique Romero-Sánchez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Project funding: The National Institute for Forestry, Agriculture and Livestock Research of Mexico funded this study through a research Grant No. 2013181125.

The online version is available at http://www.springerlink.com

Corresponding editor: Chai Ruihai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Hernández, A., Morales-Villafaña, R., Romero-Sánchez, M.E. et al. Modelling potential distribution of a pine bark beetle in Mexican temperate forests using forecast data and spatial analysis tools. J. For. Res. 31, 649–659 (2020). https://doi.org/10.1007/s11676-018-0858-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-018-0858-4

Keywords

Navigation