Skip to main content
Log in

Effects of six years of simulated N deposition on gross soil N transformation rates in an old-growth temperate forest

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Elevated atmospheric nitrogen (N) deposition has been detected in many regions of China, but its effects on soil N transformation in temperate forest ecosystems are not well known. We therefore simulated N deposition with four levels of N addition rate (N0, N30, N60, and N120) for 6 years in an old-growth temperate forest in Xiaoxing’an Mountains in Northeastern China. We measured gross N transformation rates in the laboratory using 15N tracing technology to explore the effects of N deposition on soil gross N transformations taking advantage of N deposition soils. No significant differences in gross soil N transformation rates were observed after 6 years of N deposition with various levels of N addition rate. For all N deposition soils, the gross NH4 + immobilization rates were consistently lower than the gross N mineralization rates, leading to net N mineralization. Nitrate (NO3 ) was primarily produced via oxidation of NH4 + (i.e., autotrophic nitrification), whereas oxidation of organic N (i.e., heterotrophic nitrification) was negligible. Differences between the quantity of ammonia-oxidizing bacteria and ammonia-oxidizing archaea were not significant for any treatment, which likely explains the lack of a significant effect on gross nitrification rates. Gross nitrification rates were much higher than the total NO3 consumption rates, resulting in a build-up of NO3 , which highlights the high risk of N losses via NO3 leaching or gaseous N emissions from soils. This response is opposite that of typical N-limited temperate forests suffering from N deposition, suggesting that the investigated old-growth temperate forest ecosystem is likely to approach N saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aber JD, McDowell W, Nadelhoffer KJ, Magill A, Berntson G, Kamakea M, McNulty SG, Currie W (1998) Nitrogen saturation in temperate forest ecosystems, hypotheses revisited. Bioscience 48(11):921–934

    Article  Google Scholar 

  • Aber JD, Goodale CL, Ollinger SV, Smith ML, Magill AH, Martin ME, Hallett RA, Stoddard JL (2003) Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience 53(4):375–389

    Article  Google Scholar 

  • Bengtsson G, Bergwall C (2000) Fate of 15 N labelled nitrate and ammonium in a fertilized forest soil. Soil Biol Biochem 32(4):545–557

    Article  CAS  Google Scholar 

  • Brumme R, Khanna PK (2008) Ecological and site historical aspects of N dynamics and current N status in temperate forests. Glob Change Biol 14(1):125–141

    Google Scholar 

  • Chen XY, Mulder J, Wang YH, Zhao DW, Xiang RJ (2004) Atmospheric deposition, mineralization and leaching of nitrogen in subtropical forested catchments, South China. Environ Geochem Health 26(2):179–186

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Cai ZC, Zhang JB, Scott XC (2011) Gross N transformations were little affected by 4 years of simulated N and S depositions in an aspen-white spruce dominated boreal forest in Alberta, Canada. For Ecol Manag 262(3):571–578

    Article  Google Scholar 

  • Cheng Y, Wang J, Mary B, Zhang JB, Cai ZC, Chang SX (2013) Soil pH has contrasting effects on gross and net nitrogen mineralizations in adjacent forest and grassland soils in central Alberta, Canada. Soil Biol Biochem 57:848–857

    Article  CAS  Google Scholar 

  • Christenson LM, Lovett GM, Weathers KC, Arthur MA (2009) The influence of tree species, nitrogen fertilization, and soil C to N ratio on gross soil nitrogen transformations. Soil Sci Soc Am J 73(2):638–648

    Article  CAS  Google Scholar 

  • Corre MD, Beese FO, Brumme R (2003) Soil nitrogen cycle in high nitrogen deposition forest: changes under nitrogen saturation and liming. Ecol Appl 13(2):287–298

    Article  Google Scholar 

  • Corre MD, Brumme R, Veldkamp E, Beese FO (2007) Changes in nitrogen cycling and retention processes in soils under spruce forests along a nitrogen enrichment gradient in Germany. Glob Change Biol 13(7):1509–1527

    Article  Google Scholar 

  • Cox GM, Gibbons JM, Wood ATA, Craigon J, Ramsden SJ, Crout NMJ (2006) Towards the systematic simplification of mechanistic models. Ecol Model 198(1):240–246

    Article  Google Scholar 

  • Dise NB, Matzner E, Forsius M (1998) Evaluation of organic horizon C:N ratio as an indicator of nitrate leaching in conifer forests across Europe. Environ Pollut 102(1):453–456

    Article  CAS  Google Scholar 

  • Driscoll CT, Lawrence GB, Bulger AJ, Butler TJ, Cronan CS, Eagar C, Lambert KF, Likens GE, Stoddard JL, Weathers KC (2001) Acidic deposition in the northeastern United States: sources and inputs, ecosystem effects, and management strategies. Bioscience 51(3):180–198

    Article  Google Scholar 

  • Du ZH, Wang W, Zeng WJ, Zeng H (2014) Nitrogen deposition enhances carbon sequestration by plantations in northern China. PLoS ONE 9(2):e87975

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan HB, Huang YZ, Yuan YH, Li YY, Huang RZ, Fan HY (2007) Carbon cycling of forest ecosystems in response to global nitrogen deposition: a review. Acta Ecol Sin 27(7):2997–3009

    CAS  Google Scholar 

  • Fang YT, Mo JM, Gundersen P, Zhou GY, Li DJ (2004) Nitrogen transformations in forest soils and its responses to atmospheric nitrogen deposition: a review. Acta Ecol Sin 24(7):1523–1531

    Google Scholar 

  • Galloway JN, Dianwu Z, Jiling X, Likens GE (1987) Acid rain: China, United States, and a remote area. Science 236(4808):1559–1562

    Article  CAS  PubMed  Google Scholar 

  • Galloway JN, Dentener DG, Capone EW (2004) Nitrogen cycles: past, present and future. Biogeochemistry 70(2):153–226

    Article  CAS  Google Scholar 

  • Gao WL, Yang H, Kou L, Li SG (2015) Effects of nitrogen deposition and fertilization on N transformations in forest soils: a review. J Soil Sediments 15(4):863–879

    Article  CAS  Google Scholar 

  • Gao WF, Shi BK, Jin GZ (2016) Effect of simulated nitrogen deposition on soil respiration in the typical mixed broadleaved Korean pine forest. J Nanjing For Univ 40(1):8–14

    Google Scholar 

  • Goodale CL, Aber JD (2001) The long-term effects of land-use history on nitrogen cycling in northern hardwood forests. Ecol Appl 11(1):253–267

    Article  Google Scholar 

  • Gundersen P, Callesen I, Vries WD (1998a) Nitrate leaching in forest ecosystems is related to forest floor C/N ratios. Environ Pollut 102(1):403–407

    Article  CAS  Google Scholar 

  • Gundersen P, Emmett BA, Kjonaas OJ, Koopmans CJ, Tietema A (1998b) Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. For Ecol Manag 101(1):37–55

    Article  Google Scholar 

  • Hart SC, Nason GE, Myrold DD, Perry DA (1994) Dynamics of gross nitrogen transformations in an old-growth forest: the carbon connection. Ecology 75(4):880–891

    Article  Google Scholar 

  • Hodge A, Robinson D, Fitter A (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5(7):304–308

    Article  CAS  PubMed  Google Scholar 

  • Hofstra N, Bouwman AF (2005) Denitrification in agricultural soils: summarizing published data and estimating global annual rates. Nutr Cycl Agroecosys 72(3):267–278

    Article  Google Scholar 

  • Huygens D, Rütting T, Boeckx P, Cleemput OV, Godoy R, Müller C (2007) Soil nitrogen conservation mechanisms in a pristine south Chilean Nothofagusforest ecosystem. Soil Biol Biochem 39(10):2448–2458

    Article  CAS  Google Scholar 

  • Huygens D, Boeckx P, Templer P, Paulino L, Cleemput OV, Oyarzún C, Müller C, Godoy R (2008) Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils. Nat Geosci 1(8):543–548

    Article  CAS  Google Scholar 

  • Jordan FL, Cantera JJL, Fenn ME, Stein LY (2005) Autotrophic ammonia-oxidizing bacteria contribute minimally to nitrification in a nitrogen-impacted forested ecosystem. Appl Environ Microbiol 71(1):197–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HZ (1984) Analysis of the precipitation acidity of selected areas in China. Chinese Academy of Meteorology, Beijing

    Google Scholar 

  • Lovett GM, Rueth H (1999) Soil nitrogen transformations in beech and maple stands along a nitrogen deposition gradient. Ecol Appl 9(4):1330–1344

    Article  Google Scholar 

  • Lu RK (2000) Soil agro-chemical analyses. Agricultural Technical Press of China, Beijing

    Google Scholar 

  • Lu L, Han WY, Zhang JB, Wu YC, Wang BZ, Lin XG, Zhu JG, Cai ZC, Jia ZJ (2012) Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea. ISME J 6(10):1978–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald JA, Dise NB, Matzner E, Armbruster M, Gundersen P, Forsius M (2002) Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Glob Change Biol 8(10):1028–1033

    Article  Google Scholar 

  • Matson P, Lohse KA, Hall SJ (2002) The globalization of nitrogen deposition: consequences for terrestrial ecosystems. Ambio 31(2):113–119

    Article  PubMed  Google Scholar 

  • Müller C, Stevens RJ, Laughlin RJ (2004) A 15 N tracing model to analyse N transformations in old grassland soil. Soil Biol Biochem 36(4):619–632

    Article  Google Scholar 

  • Müller C, Rütting T, Kattge J, Laughlin RJ, Stevens RJ (2007) Estimation of parameters in complex 15 N tracing models via Monte Carlo sampling. Soil Biol Biochem 39(3):715–726

    Article  Google Scholar 

  • Müller C, Rütting T, Abbasi MK, Laughlin RJ, Kammann C, Clough TJ, Sherlock RR, Kattge J, Jäger HJ, Watson CJ, Stevens RJ (2009) Effect of elevated CO2 on soil N dynamics in a temperate grassland soil. Soil Biol Biochem 41(9):1996–2001

    Article  Google Scholar 

  • Pu GX, Saffigna PG, Xu ZH (2001) Denitrification, leaching and immobilisation of 15 N-labelled nitrate in winter under windrowed harvesting residues in hoop pine plantations of 1–3 years old in subtropical Australia. For Ecol Manag 152(1):183–194

    Article  Google Scholar 

  • Pu GX, Xu ZH, Saffigna PG (2002) Fate of 15 N-labelled nitrate in a wet summer under different residue management regimes in young hoop pine plantations. For Ecol Manag 170(1):285–298

    Article  Google Scholar 

  • Qi YJ, Li FR, Liu ZL, Jin GZ (2014) Impact of understorey on overstorey leaf area index estimation from optical remote sensing in five forest types in northeastern China. Agric For Meteorol 198:72–80

    Article  Google Scholar 

  • Rütting T, Müller C (2007) 15 N tracing models with a Monte Carlo optimization procedure provide new insights on gross N transformations in soils. Soil Biol Biochem 39(9):2351–2361

    Article  Google Scholar 

  • Rütting T, Huygens D, Müller C, Cleemput OV, Godoy R, Boeckx P (2008) Functional role of DNRA and nitrite reduction in a pristine south Chilean Nothofagus forest. Biogeochemistry 90(3):243–258

    Article  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85(3):591–602

    Article  Google Scholar 

  • Soil Survey Staff (1999) Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. USDA Natural Resources Conservation Service, Washington

    Google Scholar 

  • Song L, Tian P, Zhang JB, Jin GZ (2017) Effects of 3 years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of northeast China. Sci Total Environ 609:1303–1311

    Article  CAS  PubMed  Google Scholar 

  • Stark JM, Hart SC (1997) High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature 385(6611):61–64

    Article  CAS  Google Scholar 

  • Templer PH, Lovett GM, Weathers KC, Findlay SE, Dawson TE (2005) Influence of tree species on forest nitrogen retention in the Catskill Mountains, New York, USA. Ecosystems 8(1):1–16

    Article  CAS  Google Scholar 

  • Templer PH, Silver WL, Pett-Ridge J, DeAngelis KM, Firestone MK (2008) Plant and microbial controls on nitrogen retention and loss in a humid tropical forest. Ecology 89(11):3030–3040

    Article  Google Scholar 

  • Tietema A (1998) Microbial carbon and nitrogen dynamics in coniferous forest floor material collected along a European nitrogen deposition gradient. For Ecol Manag 101(1):29–36

    Article  Google Scholar 

  • Townsend AR, Howarth RW, Bazzaz FA, Booth MS, Cleveland CC, Collinge SK, Dobson AP, Epstein PR, Holland EA, Keeney DR, Mallin MA, Rogers CA, Wayne P, Wolfe AH (2003) Human health effects of a changing global nitrogen cycle. Front Ecol Environ 1(5):240–246

    Article  Google Scholar 

  • Venterea R, Groffman P, Verchot L, Magill A, Aber J, Steudler P (2003) Nitrogen oxide gas emissions from temperate forest soils receiving long-term nitrogen inputs. Glob Change Biol 9(3):346–357

    Article  Google Scholar 

  • Vitousek PM, Reiners WA (1975) Ecosystem succession and nutrient retention: a hypothesis. Bioscience 25(6):376–381

    Article  CAS  Google Scholar 

  • Vitousek PM, Gosz JR, Grier CC, Melillo JM, Reiners WA, Todd RL (1979) Nitrate losses from disturbed ecosystems. Science 204(4392):469–474

    Article  CAS  PubMed  Google Scholar 

  • Weber DF, Gainey PL (1962) Relative sensitivity of nitrifying organisms to hydrogen ions in soils and solutions. Soil Sci 94(3):138–145

    Article  CAS  Google Scholar 

  • Wertz S, Leigh AKK, Grayston SJ (2012) Effects of long-term fertilization of forest soils on potential nitrification and on the abundance and community structure of ammonia oxidizers and nitrite oxidizers. FEMS Microbiol Ecol 79(1):142–154

    Article  CAS  PubMed  Google Scholar 

  • Xu YB, Xu ZH, Cai ZC, Reverchon F (2013) Review of denitrification in tropical and subtropical soils of terrestrial ecosystems. J Soil Sediments 13(4):699–710

    Article  CAS  Google Scholar 

  • Zhang JB, Cai ZC, Cheng Y, Zhu TB (2009) Denitrification and total nitrogen gas production from forest soils of Eastern China. Soil Biol Biochem 41(12):2551–2557

    Article  CAS  Google Scholar 

  • Zhang JB, Cai ZC, Zhu TB (2011) N2O production pathways in the subtropical acid forest soils in China. Environ Res 111(5):643–649

    Article  CAS  PubMed  Google Scholar 

  • Zhang LM, Hu HW, Shen JP, He JZ (2012) Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J 6(5):1032–1045

    Article  CAS  PubMed  Google Scholar 

  • Zhang JB, Cai ZC, Zhu TB, Yang WY, Müller C (2013) Mechanisms for the retention of inorganic N in acidic forest soils of southern China. Sci Rep 3(2342):1–8

    Google Scholar 

  • Zhang JB, Tian P, Tang JL, Yuan L, Ke Y, Cai ZC, Zhu B, Müller C (2016) The characteristics of soil N transformations regulate the composition of hydrologic N export from terrestrial ecosystem. J Geophys Res Biogeosci 121(6):1–11

    CAS  Google Scholar 

  • Zhao W, Cai ZC, Xu ZH (2007) Does ammonium-based N addition influence nitrification and acidification in humid subtropical soils of China? Plant Soil 297(1–2):213–221

    Article  CAS  Google Scholar 

  • Zogg GP, Zak DR, Pregitzer KS, Burton AJ (2000) Microbial immobilization and the retention of anthropogenic nitrate in a northern hardwood forest. Ecology 81(7):1858–1866

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangze Jin.

Additional information

Project funding: This work was supported by Grants from the “973” Project (2014CB953803), the Fundamental Research Funds for the Central Universities (2572017EA02), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, 164320H116).

The online version is available at http://www.springerlink.com

Corresponding editor: Chai Ruihai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, P., Zhang, J., Müller, C. et al. Effects of six years of simulated N deposition on gross soil N transformation rates in an old-growth temperate forest. J. For. Res. 29, 647–656 (2018). https://doi.org/10.1007/s11676-017-0484-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-017-0484-6

Keywords

Navigation