Skip to main content
Log in

Role of Surface Modification Techniques to Prevent Failure of Components Subjected to the Fireside of Boilers

  • Review
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

There are distinct types of boilers, such as fire tube boilers, water tube boilers, pulverized fuel boilers, grate furnace boiler, oil and gas-fired boilers, fluidized bed combustion boilers, and waste heat boilers. These boilers are employed in distinct industries such as chemical, fertilizer, refinery, cement, textile, pharmaceutical, steel, sugar, pulp and paper, food, and thermal power plants. But these boilers are subjected to various types of failures and pose a severe threat to the efficiency of the plant/industries. Hence, this manuscript aims to provide an overview of various causes of boiler failures, including caustic embrittlement, oxygen pitting, fouling, agglomeration, hydrogen damage, stress corrosion cracking, slagging, fatigue failure, hot corrosion, oxidation, erosion, etc. Finally, various preventive measures, including surface modification techniques, are discussed. So, by developing more advanced coating material combinations and methods/preventive measure, it is possible to improve the qualities of protection for futuristic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.C. Barma, R. Saidur, S.M.A. Rahman, A. Allouhi, B.A. Akash, S.M. Sait, A review on boilers energy use, energy savings, and emissions reductions. Renew. Sustain. Energy Rev. 79, 970–983 (2017)

    Article  Google Scholar 

  2. G.C. Wood, High-temperature oxidation of alloys. Oxid. Met. 2(1), 11–57 (1970). https://doi.org/10.1007/BF00603581

    Article  CAS  Google Scholar 

  3. J. Stringer, High temperature corrosion issues in energy-related systems. Mater. Res. 7, 01–19 (2004). https://doi.org/10.1590/S1516-14392004000100002

    Article  CAS  Google Scholar 

  4. S. Chaudhuri, R. Singh, High temperature boiler tube failures–case studies. in Proceeding COFA@NML Jamshdpur (1997), pp. 107-120. https://core.ac.uk/download/pdf/297711125.pdf

  5. S.K. Dhua, Metallurgical investigation of failed boiler water-wall tubes received from a thermal power station. Eng. Fail. Anal. 17(7), 1572–1579 (2010). https://doi.org/10.1016/j.engfailanal.2010.06.004

    Article  CAS  Google Scholar 

  6. J. Ahmad, J. Purbolaksono, L.C. Beng, A.Z. Rashid, A. Khinani, A.A. Ali, Failure investigation on rear water wall tube of boiler. Eng. Fail. Anal. 16(7), 2325–2332 (2009). https://doi.org/10.1016/j.engfailanal.2009.03.012

    Article  CAS  Google Scholar 

  7. J. Ahmad, J. Purbolaksono, Hydrogen damage in a rear riser water wall tube of a power plant. Eng. Fail. Anal. 17(5), 1239–1245 (2010). https://doi.org/10.1016/j.engfailanal.2010.01.005

    Article  CAS  Google Scholar 

  8. S.W. Liu, W.Z. Wang, C.J. Liu, Failure analysis of the boiler water-wall tube. Case Stud. Eng. Fail. Anal. 9, 35–39 (2017). https://doi.org/10.1016/j.csefa.2017.06.002

    Article  Google Scholar 

  9. S. Kumar, P. Tadge, A. Mondal, N. Hussain, S. Ray, A. Saha, Boiler tube failures in thermal power plant: two case studies. Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2022.06.254

    Article  Google Scholar 

  10. D.J. Benac, Failure avoidance brief: estimating heater tube life. J Fail. Anal. Preven. 9(1), 5–7 (2009). https://doi.org/10.1007/s11668-008-9190-1

    Article  Google Scholar 

  11. J.J. Perdomo, T.D. Spry, An overheat boiler tube failure. J Fail. Anal. Preven. 5(2), 25–28 (2005). https://doi.org/10.1361/15477020522997

    Article  Google Scholar 

  12. P.M. Singh, J. Mahmood, Stress assisted corrosion of waterwall tubes in recovery boiler tubes: failure analysis. J. Fail. Anal. Preven. 7(5), 361–370 (2007). https://doi.org/10.1007/s11668-007-9063-z

    Article  Google Scholar 

  13. S. Chaudhuri, Some aspects of metallurgical assessment of boiler tubes—basic principles and case studies. Mater. Sci. Eng. A. 432(1), 90–99 (2006). https://doi.org/10.1016/j.msea.2006.06.026

    Article  CAS  Google Scholar 

  14. N.-H. Lee, S. Kim, B.-H. Choe, K.-B. Yoon, D. Kwon, Failure analysis of a boiler tube in USC coal power plant. Eng. Fail. Anal. 16(7), 2031–2035 (2009). https://doi.org/10.1016/j.engfailanal.2008.12.006

    Article  CAS  Google Scholar 

  15. S. Prakash, Hot corrosion of alloys and coatings. Develop. High Temp. Corr. Prot. Mater. (2008). https://doi.org/10.1533/9781845694258.1.164

    Article  Google Scholar 

  16. P. Hancock, Vanadic and chloride attack of superalloys. Mater. Sci. Technol. 3(7), 536–544 (1987). https://doi.org/10.1080/02670836.1987.11782265

    Article  CAS  Google Scholar 

  17. V. Chawla, A. Chawla, D. Puri, S. Prakash, P.G. Gurbuxani, B.S. Sidhu, Hot corrosion and erosion problems in coal based power plants in India and possible solutions—a review. JMMCE. 10(04), 367–386 (2011). https://doi.org/10.4236/jmmce.2011.104027

    Article  Google Scholar 

  18. J.J. Wells, F. Wigley, D.J. Foster, W.R. Livingston, W.H. Gibb, J. Williamson, The nature of mineral matter in a coal and the effects on erosive and abrasive behaviour. Fuel Process. Technol. 86(5), 535–550 (2005). https://doi.org/10.1016/j.fuproc.2004.04.002

    Article  CAS  Google Scholar 

  19. B.S. Sidhu, S. Prakash, Evaluation of the behavior of shrouded plasma spray coatings in the platen superheater of coal-fired boilers. Metall. Mater. Trans. A. 37(6), 1927–1936 (2006). https://doi.org/10.1007/s11661-006-0135-6

    Article  Google Scholar 

  20. V.H. Hidalgo, J.B. Varela, A.C. Menéndez, S.P. Martinez, High temperature erosion wear of flame and plasma-sprayed nickel–chromium coatings under simulated coal-fired boiler atmospheres. Wear. 247(2), 214–222 (2001). https://doi.org/10.1016/S0043-1648(00)00540-8

    Article  Google Scholar 

  21. I. Hutchings, P. Shipway, Surface Engineering, in Tribology, 2nd edn. ed. by I. Hutchings, P. Shipway (Butterworth-Heinemann, UK, 2017)

    Google Scholar 

  22. Y. Sasikumar, K. Indira, N. Rajendran, Surface modification methods for titanium and its alloys and their corrosion behavior in biological environment: a review. J. Bio. Tribo. Corr. 5(2), 36 (2019). https://doi.org/10.1007/s40735-019-0229-5

    Article  Google Scholar 

  23. M. Sathish, N. Radhika, B. Saleh, A critical review on functionally graded coatings: methods, properties, and challenges. Compos. B Eng. 225, 109278 (2021). https://doi.org/10.1016/j.compositesb.2021.109278

    Article  CAS  Google Scholar 

  24. S. Kumar, R. Kumar, Influence of processing conditions on the properties of thermal sprayed coating: a review. Surf. Eng. 37(11), 1339–1372 (2021). https://doi.org/10.1080/02670844.2021.1967024

    Article  CAS  Google Scholar 

  25. R. Kumar, Thermal spray coating: a study. 2018. https://doi.org/10.5281/ZENODO.1207005

  26. S. Kumar, M. Kumar, A. Handa, Combating hot corrosion of boiler tubes—a study. Eng. Fail. Anal. 94, 379–395 (2018). https://doi.org/10.1016/j.engfailanal.2018.08.004

    Article  CAS  Google Scholar 

  27. S. Kumar, M. Kumar, N. Jindal, Overview of cold spray coatings applications and comparisons: a critical review. World J. Eng. 17(1), 27–51 (2020). https://doi.org/10.1108/WJE-01-2019-0021

    Article  CAS  Google Scholar 

  28. R. Huang, H. Fukanuma, Future Trends in Cold Spray Techniques, in Future Development of Thermal Spray Coatings. ed. by N. Espallargas (Woodhead Publishing, UK, 2015)

    Google Scholar 

  29. L. Singh, V. Chawla, J.S. Grewal, A review on detonation gun sprayed coatings. JMMCE. 11(03), 243–265 (2012). https://doi.org/10.4236/jmmce.2012.113019

    Article  Google Scholar 

  30. V.A.D. Souza, A. Neville, Aspects of microstructure on the synergy and overall material loss of thermal spray coatings in erosion–corrosion environments. Wear. 263(1), 339–346 (2007). https://doi.org/10.1016/j.wear.2007.01.071

    Article  CAS  Google Scholar 

  31. G. Sundararajan, D.S. Rao, G. Sivakumar, S.V. Joshi, Detonation Spray Coatings, in Encyclopedia of Tribology. ed. by Q.J. Wang, Y.-W. Chung (Springer, Boston, 2013)

    Google Scholar 

  32. J.H. Kim, M.C. Kim, C.G. Park, Evaluation of functionally graded thermal barrier coatings fabricated by detonation gun spray technique. Surf. Coat. Technol. 168(2), 275–280 (2003). https://doi.org/10.1016/S0257-8972(03)00011-2

    Article  CAS  Google Scholar 

  33. D.V. Rosato, D.V. Rosato, M.V. Rosato, 10—Coating, in Plastic Product Material and Process Selection Handbook. ed. by D.V. Rosato, D.V. Rosato, M.V. Rosato (Elsevier, Oxford, 2004)

    Google Scholar 

  34. M.R. Dorfman, Thermal Spray Coatings, in Handbook of Environmental Degradation of Materials, 3rd edn. ed. by M. Kutz (William Andrew Publishing, Norwich, 2018)

    Google Scholar 

  35. S. Kumar, A. Handa, V. Chawla, N.K. Grover, R. Kumar, Performance of thermal-sprayed coatings to combat hot corrosion of coal-fired boiler tube and effect of process parameters and post-coating heat treatment on coating performance: a review. Surf. Eng. 37(7), 833–860 (2021). https://doi.org/10.1080/02670844.2021.1924506

    Article  CAS  Google Scholar 

  36. K. Sunitha, H. Vasudev, A short note on the various thermal spray coating processes and effect of post-treatment on Ni-based coatings. Mater. Today: Proc. 50, 1452–1457 (2022). https://doi.org/10.1016/j.matpr.2021.09.017

    Article  CAS  Google Scholar 

  37. R. Kumar, R. Kumar, S. Kumar, Erosion corrosion study of HVOF sprayed thermal sprayed coatings on boiler tubes: a review. IJSMS. (2018). https://doi.org/10.51386/25815946/ijsms-v1i3p101

    Article  Google Scholar 

  38. K.E. Fox, N.L. Tran, T.A. Nguyen, T.T. Nguyen, P.A. Tran, 8—Surface Modification of Medical Devices at Nanoscale—Recent Development and Translational Perspectives, in Biomaterials in Translational Medicine. ed. by L. Yang, S.B. Bhaduri, T.J. Webster (Academic Press, Cambridge, 2019)

    Google Scholar 

  39. U. Gunputh, H. Le, 6—Composite Coatings for Implants and Tissue Engineering Scaffolds, in Biomedical Composites, 2nd edn. ed. by L. Ambrosio (Woodhead Publishing, UK, 2017)

    Google Scholar 

  40. S. Devaraj, B. Anand, M. Gibbons, A. McDonald, S. Chandra, Thermal spray deposition of aluminum and zinc coatings on thermoplastics. Surf. Coat. Technol. 399, 126114 (2020). https://doi.org/10.1016/j.surfcoat.2020.126114

    Article  CAS  Google Scholar 

  41. A. Scrivani, U. Bardi, L. Carrafiello, A. Lavacchi, F. Niccolai, G. Rizzi, A comparative study of high velocity oxygen fuel, vacuum plasma spray, and axial plasma spray for the deposition of CoNiCrAlY bond coat alloy. J. Therm. Spray Technol. 12, 504–507 (2003). https://doi.org/10.1361/105996303772082242

    Article  CAS  Google Scholar 

  42. S. Kumar, M. Kumar, A. Handa, Erosion corrosion behaviour and mechanical properties of wire arc sprayed Ni-Cr and Ni-Al coating on boiler steels in a real boiler environment. Mater. High Temp. 37(6), 370–384 (2020). https://doi.org/10.1080/09603409.2020.1810922

    Article  CAS  Google Scholar 

  43. S. Kumar, M. Kumar, A. Handa, Comparative study of high temperature oxidation behavior and mechanical properties of wire arc sprayed NiCr and NiAl coatings. Eng. Fail. Anal. 106, 104173 (2019). https://doi.org/10.1016/j.engfailanal.2019.104173

    Article  CAS  Google Scholar 

  44. S. Kumar, M. Kumar, A. Handa, High temperature oxidation and erosion-corrosion behaviour of wire arc sprayed Ni-Cr coating on boiler steel. Mater. Res. Express. 6(12), 125533 (2020). https://doi.org/10.1088/2053-1591/ab5fae

    Article  CAS  Google Scholar 

  45. M. Kumar, S. Kant, S. Kumar, Corrosion behavior of wire arc sprayed Ni-based coatings in extreme environment. Mater. Res. Express. 6(10), 106427 (2019). https://doi.org/10.1088/2053-1591/ab3bd8

    Article  CAS  Google Scholar 

  46. V. Sharma, S. Kumar, M. Kumar, D. Deepak, High temperature oxidation performance of Ni-Cr-Ti and Ni-5Al coatings. Mater. Today: Proc. 26, 3397–3406 (2020). https://doi.org/10.1016/j.matpr.2019.11.048

    Article  CAS  Google Scholar 

  47. P. Chivavibul et al., Development of WC-Co coatings deposited by warm spray process. J. Therm. Spray Tech. 17(5), 750–756 (2008). https://doi.org/10.1007/s11666-008-9271-4

    Article  CAS  Google Scholar 

  48. N. Bala, H. Singh, S. Prakash, Accelerated hot corrosion studies of cold spray Ni–50Cr coating on boiler steels. Mater. Des. 31(1), 244–253 (2010). https://doi.org/10.1016/j.matdes.2009.06.033

    Article  CAS  Google Scholar 

  49. B.S. Sidhu, S. Prakash, Studies on the behaviour of Stellite-6 as plasma sprayed and laser remelted coatings in molten salt environment at 900 °C under cyclic conditions. J. Mater. Process. Technol. 172(1), 52–63 (2006). https://doi.org/10.1016/j.jmatprotec.2005.08.018

    Article  CAS  Google Scholar 

  50. A. Mangla, V. Chawla, G. Singh, Comparative study of hot corrosion behavior of HVOF and plasma sprayed Ni20Cr coating on SA213 (T22) boiler steel in Na2SO4–60% V2O5 environment. Inte. J. Eng. Sci. Res. Technol. 4(11), 2348–8034 (2017)

    Google Scholar 

  51. A. Rani, N. Bala, C.M. Gupta, Accelerated hot corrosion studies of D-gun-sprayed Cr2O3–50% Al2O3 coating on boiler steel and Fe-based superalloy. Oxid. Met. 88(5), 621–648 (2017). https://doi.org/10.1007/s11085-017-9759-8

    Article  CAS  Google Scholar 

  52. M. Tiainen, J. Daavitsainen, R.S. Laitinen, The role of amorphous material in ash on the agglomeration problems in fb boilers. a powder XRD and SEM-EDS study. Energy Fuels. 16(4), 871–877 (2002). https://doi.org/10.1021/ef010269j

    Article  CAS  Google Scholar 

  53. E.J. Anthony, L. Jia, Agglomeration and strength development of deposits in CFBC boilers firing high-sulfur fuels. Fuel. 79(15), 1933–1942 (2000). https://doi.org/10.1016/S0016-2361(00)00054-5

    Article  CAS  Google Scholar 

  54. M. Öhman, A. Nordin, The role of kaolin in prevention of bed agglomeration during fluidized bed combustion of biomass fuels 2000. Energy Fuels. 14(3), 737–737 (2000). https://doi.org/10.1021/ef000065n

    Article  CAS  Google Scholar 

  55. M. Theis, B.-J. Skrifvars, M. Zevenhoven, M. Hupa, H. Tran, Fouling tendency of ash resulting from burning mixtures of biofuels. Part 2: deposit chemistry. Fuel. 14–15(85), 1992–2001 (2006). https://doi.org/10.1016/j.fuel.2006.03.015

    Article  CAS  Google Scholar 

  56. N. Hare, M. Rasul, S. Moazzem, A review on boiler deposition/foulage prevention and removal techniques for power plant. in EE’10: Proceedings of the 5th IASME/WSEAS international conference on Energy & environment (2010), pp. 217-222. https://dl.acm.org/doi/10.5555/1807906.1807947

  57. E. Raask, Mineral impurities in coal combustion: behavior, problems, and remedial measures. (1985). Available: https://www.osti.gov/biblio/5693722

  58. R.W. Bryers, Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Prog. Energy Combust. Sci. 22(1), 29–120 (1996). https://doi.org/10.1016/0360-1285(95)00012-7

    Article  CAS  Google Scholar 

  59. F. Wigley, J. Williamson, Modelling fly ash generation for pulverised coal combustion. Prog. Energy Combust. Sci. 24(4), 337–343 (1998). https://doi.org/10.1016/S0360-1285(98)00005-7

    Article  CAS  Google Scholar 

  60. A.R. McLennan, G.W. Bryant, C.W. Bailey, B.R. Stanmore, T.F. Wall, An experimental comparison of the ash formed from coals containing pyrite and siderite mineral in oxidizing and reducing conditions. Energy Fuels. 14(2), 308–315 (2000). https://doi.org/10.1021/ef990092h

    Article  CAS  Google Scholar 

  61. D. Zhang, Ash fouling, deposition and slagging in ultra-supercritical coal power plants. Ultra-Supercrit. Coal Power Plants Mater. Technol. Optim. (2013). https://doi.org/10.1533/9780857097514.2.133

    Article  Google Scholar 

  62. A.L. Robinson, H. Junker, L.L. Baxter, Pilot-scale investigation of the influence of coal−biomass cofiring on ash deposition. Energy Fuels. 16(2), 343–355 (2002). https://doi.org/10.1021/ef010128h

    Article  CAS  Google Scholar 

  63. F. Frandsen, Ash formation, deposition and corrosion when utilizing straw for heat and power production. Doctoral thesis, DTU Chemical Engineering (2010). https://orbit.dtu.dk/files/6228196/prod21319533943894.Doc_Thesis_V7.0PC_Publishable_Version.pdf

  64. I. Panagiotidis, K. Vafiadis, A. Tourlidakis, A. Tomboulides, Study of slagging and fouling mechanisms in a lignite-fired power plant. Appl. Therm. Eng. 74, 156–164 (2015). https://doi.org/10.1016/j.applthermaleng.2014.03.043

    Article  Google Scholar 

  65. P.P. Płaza, The development of a slagging and fouling predictive methodology for large scale pulverised boilers fired with coal/biomass blends. PhD Thesis, Cardiff University (2013). https://orca.cardiff.ac.uk/id/eprint/58453/1/2014PlazaPPPhD.pdf

  66. Rakhoh, Caustic Embrittlement in Steam Boilers | Causes and Prevention—Boilers and Steam Boiler Manufacturer in Maharashtra, Pune (2022). https://rakhoh.com/en/caustic-embrittlement-in-steam-boilers-causes-and-prevention/

  67. E.W. Colbeck, L. Powell, S.H. Smith, Caustic embrittlement. Proc. Inst. Mech. Eng. 149(1), 63–73 (1943). https://doi.org/10.1243/PIME_PROC_1943_149_019_02

    Article  Google Scholar 

  68. R.K. Singh Raman, Role of caustic concentration and electrochemical potentials in caustic cracking of steels. Mater. Sci. Eng.: A. 441(1), 342–348 (2006). https://doi.org/10.1016/j.msea.2006.08.041

    Article  CAS  Google Scholar 

  69. H.H. Krause, High temperature corrosion problems in waste incineration systems. JMES. 7(4), 322–332 (1986). https://doi.org/10.1007/BF02833571

    Article  CAS  Google Scholar 

  70. P. Haribhakti, P.B. Joshi, R. Kumar, Failure Investigation of Boiler Tubes: A Comprehensive Approach. (ASM International, Almere, 2018)

    Book  Google Scholar 

  71. RAKHOH, Causes and prevention of boiler tube failures in fireside of Steam boilers. Boilers and Steam Boiler Manufacturer in Maharashtra, Pune, (2021). https://rakhoh.com/en/causes-and-prevention-of-boiler-tube-failures-in-fireside-of-steam-boilers/

  72. S.L. Meiley, Cause and prevention of fatigue failures in boiler tubing. in ASM failure analysis case histories: power generating equipment (2019). https://doi.org/10.31399/asm.fach.power.c9001569

  73. S. J Maddox, Fatigue Strength of Welded Structures, 2nd edn. Woodhead Publishing Series in Welding and Other Joining Technologies (1991). https://www.elsevier.com/books/fatigue-strength-of-welded-structures/maddox/978-1-85573-013-7

  74. Oxygen attack in boilers—Lenntech. https://www.lenntech.com/applications/process/boiler/oxygen-attack.htm

  75. D.D.N. Singh, Various forms of water side corrosion: causes and prevention. in National conference on boiler corrosion (NML Jamshepur, 1995), pp. 1–14. https://eprints.nmlindia.org/3557/1/H1-H14.PDF

  76. RAKHOH, Corrosion in Steam Boiler: Causes and its Solution. Boilers and Steam Boiler Manufacturer in Maharashtra, Pune, (2021). https://rakhoh.com/en/corrosion-in-steam-boiler-causes-and-its-solution/

  77. Different Types of Corrosion: Stress Corrosion Cracking (SCC)—Causes and Prevention, WebCorr Corrosion Consulting Services, Corrosion Short Courses and Corrosion Expert Witness, WEBCORR The corrosion clinic (1995), pp. 1–2. https://www.corrosionclinic.com/types_of_corrosion/stress_corrosion_cracking.htm

  78. Y.S. Kim, W.C. Kim, J. Jain, E.-W. Huang, S.Y. Lee, Hydrogen embrittlement of a boiler water wall tube in a district heating system. Metals. 12(8), 8 (2022). https://doi.org/10.3390/met12081276

    Article  CAS  Google Scholar 

  79. P.F. Timmins, Solutions to Hydrogen Attack in Steels. (ASM International, Materials Park, 1997)

    Google Scholar 

  80. R.K. Dayal, N. Parvathavarthini, Hydrogen embrittlement in power plant steels. Sadhana. 28(3), 431–451 (2003). https://doi.org/10.1007/BF02706442

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful to R&D department of Chandigarh University Gharuan and Chandigarh Group of Colleges, Landran, Mohali, Punjab (India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K., Kumar, S. & Gill, H.S. Role of Surface Modification Techniques to Prevent Failure of Components Subjected to the Fireside of Boilers. J Fail. Anal. and Preven. 23, 1–15 (2023). https://doi.org/10.1007/s11668-022-01556-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-022-01556-w

Keywords

Navigation