Skip to main content
Log in

Graphene Oxide/Poly(3-hexylthiophene) Nanocomposite Thin-Film Phototransistor for Logic Circuit Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Graphene is a sheet-structured material that lacks a forbidden band, being a good candidate for use in radiofrequency applications. We have elaborated graphene-oxide-doped poly(3-hexylthiophene) nanocomposite to increase the interlayer distance and thereby open a large bandgap for use in the field of logic circuits. Graphene oxide/poly(3-hexylthiophene) (GO/P3HT) nanocomposite thin-film transistors (TFTs) were fabricated on silicon oxide substrate by spin coating method. The current–voltage (IV) characteristics of TFTs with various P3HT compositions were studied in the dark and under light illumination. The photocurrent, charge carrier mobility, subthreshold voltage, density of interface states, density of occupied states, and ION/IOFF ratio of the devices strongly depended on the P3HT weight ratio in the composite. The effects of white-light illumination on the electrical parameters of the transistors were investigated. The results indicated that GO/P3HT nanocomposite thin-film transistors have high potential for use in radiofrequency applications, and their feasibility for use in digital applications has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. He, J. Klinowski, M. Forster, and A. Lerf, Chem. Phys. Lett. 287, 53 (1998).

    Article  Google Scholar 

  2. D.R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, and V. Yu, Int. Sch. Res. Netw. ISRN Condens. Matter Phys. 2012, 501686 (2012). https://doi.org/10.5402/2012/501686

  3. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  Google Scholar 

  4. A. Cresti, N. Nemec, B. Biel, G. Niebler, F. Triozon, G. Cuniberti and S. Roche, Nano Res. 361–394 (2008)

  5. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Article  Google Scholar 

  6. A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 487 (2007).

    Article  Google Scholar 

  7. F. Schwierz, Nat. Nanotech. 5, 183 (2010).

    Article  Google Scholar 

  8. C.G. Garcia, A.S. Polo, and N.Y.M. Iha, J. Photochem. Photobiol. A Chem. 160, 87 (2003).

    Article  Google Scholar 

  9. Ahmed A. Al-Ghamdi, R.K. Gupta, P.K. Kahol, S. Wageh, Y.A. Al-Turki, W. El Shirbeeny, and F. Yakuphanoglu, Solid State Commun. 183, 56 (2014).

    Article  Google Scholar 

  10. S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (New York: Wiley-Interscience, 1981).

    Google Scholar 

  11. G. Horowitz and P. Delannoy, J. Appl. Phys. 70, 469 (1991).

    Article  Google Scholar 

  12. M. Shur, Physics of Semiconductor Devices (Englewood Cliffs: Prentice-Hall, 1990).

    Google Scholar 

  13. M.Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).

    Article  Google Scholar 

  14. Z. Chen, Y. Lin, and M. Rooks, Phys. E 40, 228 (2007).

    Article  Google Scholar 

  15. E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.M.B. Lopes dos Santos, F. Guinea, A.K. Geim, and A.H.C. Neto, Phys. Rev. Lett. 99, 216802 (2007).

    Article  Google Scholar 

  16. Y. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, and F. Wang, Nature 459, 820 (2009).

    Article  Google Scholar 

  17. I. Karteri, Ş. KarataŞ, Ahmed A. Al-Ghamdi, and F. Yakuphanoglu, Synth. Met. 199, 241 (2015).

    Article  Google Scholar 

  18. F. Yakuphanoglu and B. Gunduz, Synth. Met. 162, 1210 (2012).

    Article  Google Scholar 

  19. M.C. Lemme, IEEE Electron Dev. Lett. 28, 282 (2007).

    Article  Google Scholar 

  20. J.S. Moon, D. Curtis, M. Hu, D. Wong, C. McGuire, P.M. Campbell, G. Jernigan, J.L. Tedesco, B. VanMil, R. Myers-Ward, C. Eddy, and D.K. Gaskill, IEEE. Electron Device Lett. 30, 650 (2009).

    Article  Google Scholar 

  21. Y.M. Lin, K.A. Jenkins, A.V. Garcia, J.P. Small, D.B. Farmer, and P. Avouris, Nano Lett. 9, 422 (2009).

    Article  Google Scholar 

  22. Y.M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.Y. Chiu, A. Grill, and P. Avouris, Science 327, 662 (2010).

    Article  Google Scholar 

  23. Y. Wu, Y. Lin, A.A. Bol, K.A. Jenkins, F. Xia, D.B. Farmer, Y. Zhu, and P. Avouris, Nature 472, 74 (2011).

    Article  Google Scholar 

  24. E.J.H. Lee, K. Balasubramanian, R.T. Weitz, M. Burghard, and K. Kern, Nat. Nanotech. 3, 486 (2008).

    Article  Google Scholar 

  25. F. Xia, T. Mueller, R.G. Mojarad, M. Freitag, Y.M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, Nano Lett. 9, 1039 (2009).

    Article  Google Scholar 

  26. J. Park, Y.H. Ahn, and C. Ruiz-Vargas, Nano Lett. 9, 1742 (2009).

    Article  Google Scholar 

  27. X. Xu, N.M. Gabor, J.S. Alden, A.M. van der Zande, and P.L. McEuen, Nano Lett. 10, 562 (2010).

    Article  Google Scholar 

  28. J.C. Song, M.S. Rudner, C.M. Marcus, and L.S. Levitov, Nano Lett. 11, 4688 (2011).

    Article  Google Scholar 

  29. M.N. Gabor, J.C. Song, Q. Ma, N.L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L.S. Levitov, and P. Jarillo-Herrero, Science 334, 648 (2011).

    Article  Google Scholar 

  30. L. Majewski and M. Grell, Synth. Met. 151, 175 (2005).

    Article  Google Scholar 

  31. G. Horowitz, Adv. Funct. Mater. 13, 53 (2003).

    Article  Google Scholar 

  32. J.S. Moon, IEEE Electron Device Lett. 31, 260 (2010).

    Article  Google Scholar 

  33. Y.Q. Wu, P.D. Ye, M.A. Capano, Y. Xuan, Y. Sui, M. Qi, J.A. Cooper, T. Shen, D. Pandey, G. Prakash, and R. Reifenberger, Appl. Phys. Lett. 92, 092102 (2008).

    Article  Google Scholar 

  34. G. Gu, S. Nie, R.M. Feenstra, R.P. Devaty, W.J. Choyke, W.K. Chan, and M.G. Kane, Appl. Phys. Lett. 90, 253507 (2007).

    Article  Google Scholar 

  35. T.A. Fjeldly and M. Shur, in Workshop Proceedings, 21st European Microwave Conference, Stuttgart (1991), pp. 198–205

  36. T.A. Fjeldly, M. Shur, T.Y. Ytterdal and K. Lee, in Proceedings of the First International Semiconductor Device Research Symposium, Charlottesville (1991), pp. 407–410

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mansouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri, S., Coskun, B., El Mir, L. et al. Graphene Oxide/Poly(3-hexylthiophene) Nanocomposite Thin-Film Phototransistor for Logic Circuit Applications. J. Electron. Mater. 47, 2461–2467 (2018). https://doi.org/10.1007/s11664-018-6081-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6081-4

Keywords

Navigation